Cryptography against
Space-Bounded Adversaries

Jiaxin GuaN

A DISSERTATION
PRESENTED TO THE FACULTY
OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE
orF DocCTOR oF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE
BY THE DEPARTMENT OF
COMPUTER SCIENCE

ADVISER: MARK ZHANDRY

SEPTEMBER 2023

© COPYRIGHT BY JIAXIN GUAN, 2023. ALL RIGHTS RESERVED.

ABSTRACT

Traditionally in cryptography, we consider adversaries that are time-bounded by mak-
ing certain computational assumptions. In this thesis, I study the scenario where the adver-
saries are space-bounded, i.e. the adversary can only use up to a certain amount of memory
bits. Under these scenarios, we can achieve either unconditional security properties or never-
before-possible results.

First, I start oft with Maurer’s Bounded Storage Model. Itis a model where the adversary
abides by a certain memory bound throughout the entire attack. Under this model, I show
simple constructions of a key-agreement protocol, a commitment scheme, and an oblivious
transfer protocol, all based on Raz’s lower bound on parity learning. These constructions
have several advantages over prior work, including enhanced correctness and an improved
and optimal number of rounds.

Subsequently, I show that if we combine computational assumptions with the bounded
storage model, we can achieve results that are not possible in the standard model. I define
a new object named Online Obfuscation, which is analogous to a Virtual Grey-Box Obfus-
cation in the Bounded Storage Model, and show how to use it to construct disappearing
encryption and signature schemes where the ciphertext and the signature effectively “disap-
pear” after transmission.

Lastly, I make the observation that in the Bounded Storage Model, the memory bound
on the adversary is enforced throughout the entire game. One can imagine a variant where
the bound is only enforced for long-term storage, allowing the adversary to use an arbitrary
amount of memory during the transmission phase. I define incompressible cryptography to
capture this intuition and show constructions using randomness extractors and other cryp-
tographic tools. Furthermore, I show that under the multi-user setting, we can still achieve
desired incompressible security if we simply replace the randomness extractor with a special
“multi-instance randomness extractor”.

iii

Contents

ABSTRACT

1 INTRODUCTION

I.1I
I.2

1.3

Our Contributions o o v
Organization o
Publications contained in thisthesis

2. PRELIMINARIES

2.1
2.2

Min-Entropy Extractoro o 000000
Functional Encryption

3 SIMPLE SCHEMES IN THE BOUNDED STORAGE MODEL

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Introduction
Chapter Preliminaries
Raz’s Encryption Schemeo oo L
Encrypt Zero Protocols oo oL
Two-Party Key-Agreement Protocol
Bit CommitmentScheme
Oblivious Transfer Protocol

4 Di1sAPPEARING CRYPTOGRAPHY IN THE BOUNDED STORAGE MODEL

4.1
4.2
4.3
4-4
4.5
4.6
4.7
4.8

Introduction
Defining Obfuscation in the Bounded Storage Model
Impossibility of VBB Online Obfuscation
Public Key Encryption with Disappearing Ciphertext Security
Disappearing Signature Schemeo o000
Functional Encryption o o L
Candidate Construction I v i i
Candidate Construction 2 o v it e

iv

iii

O 0 N -

I0
II
I2

IS

29
31
39
46
48
53

s INCOMPRESSIBLE CRYPTOGRAPHY

s.1 Introduction
5.2 Chapter Preliminaries
5.3 Incompressible Encryption: Our Basic Construction . . .
s.4 Rate-1 Incompressible Encryption
s.s Incompressible Signatures: Our Basic Construction . . .
5.6 Rate-1 Incompressible Signatures
5.7 Constructing Rate-1 Functional Encryption

6 MULTI-USER INCOMPRESSIBLE ENCRYPTION

6.1 Introduction L.,
6.2 Chapter Preliminaries
6.3 Multi-Instance Randomness Extraction
6.4 Multi-User Security for Incompressible Encryption
6.s Symmetric Key Incompressible Encryption
6.6 Public Key Incompressible Encryption

6.7 Incompressible Encryption in the Random Oracle Model

REFERENCES

123
124
141
142
I51
157
161
165

179
180
197
199
210
212
228

264

5.1
5.2
5-3
5-4
5-S

Listing of figures

Theprogram Pepc. . . . o o o oo 169
Theprogram Ppecpe -« v v v v v v i 169
The program PE:I;C Difterences from Pgy highlighted in yellow. 171
The program Pg:é} Differences from Pgn s highlighted in yellow. 171
The program Phagn. - -« « v v v v o i 177
The program Ppii. Differences from Pyasn are highlighted in yellow. 178

vi

DEDICATED TO MY PARENTS, HONG GUAN AND MEIHONG TIAN.

vii

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my advisor, Mark
Zhandry. Mark has been an inspiring mentor, an insightful collaborator, and an incredible
friend throughout my PhD journey. When I embarked on my PhD, I was merely wandering
into the realm of cryptography without any set directions. I am truly thankful that Mark
brought up the direction of space-bounded adversaries, which has now become the focus of
this thesis. Although it was not initially one of Mark’s more “established” research direc-
tions, he enthusiastically embraced this new path and explored the area together with me for
the past six years.

One of the highlight memories from my PhD is this one snowy afternoon when Mark and
I sat in his office, staring at the snow falling onto the gorgeous Princeton campus while con-
templating a challenging problem in the Bounded Storage Model. But there have been many
more afternoons like this. And it is through these countless afternoons that Mark guided me
from a bewildered PhD student to a more independent researcher. Mark’s guidance and sup-

port have been invaluable throughout this process. And of course, on a more practical note,

viii

I am grateful for the financial support I received from Mark’s NSF grant, which enabled me
to attend various conferences and engage with fellow researchers.

I am also grateful to Princeton’s Computer Science Department, which provided me
with spacious offices and decent whiteboards. I enjoyed the theory lunches and seminars
organized by the theory group, not just for their great catering choices, but more for all the
insights they’ve brought to my own research. I want to extend my special thanks to Mark
Braverman, Gillat Kol, Ran Raz, Matt Weinberg, and Mark Zhandry for taking their precious
time to be on my committee. I also deeply appreciate the administrative support from Nicki
Mahler and Mitra Kelly, whose professionalism makes a lot of the complicated tasks feel like
a breeze.

I would also like to express my appreciation to all my collaborators, both on published
works and ongoing research projects: James Bartusek, Dan Boneh, Pratish Datta, Alexis
Korb, Fermi Ma, Hart Montgomery, Amit Sahai, Daniel Wichs, and Mark Zhandry. Work-
ing with them has been a truly delightful experience, and I highly value their insights into
various cryptographic problems.

Furthermore, I extend my thanks to Xinyi Xu, Qipeng Liu, Wei Zhan, Yuping Luo, Cong
Qiaoben, Bin Liu, Chang Tian, Yi Zhao, and Changshuo Liu for their companionship on
this journey. During times when I felt down, stressed, or simply worried about COVID-19,
their presence and conversations always managed to uplift and carry me through the hard-
ships.

Lastly, I am deeply grateful to my parents, Hong Guan and Meihong Tian, for their un-
conditional love and unwavering support. They have always respected my choices and pro-

vided me with the maximum level of support possible. Without them, it would be impossible

ix

for me to reach where I am today. Therefore, I dedicate this thesis to them, who, from my

point of view, are the best parents one can possibly ask for.

Introduction

TIME AND SPACE ARE THE TWO MOST BASIC TYPES OF COMPUTATIONAL RESOURCES.
Computation time dictates the number of steps needed to solve a problem, and memory space
determines the amount of memory storage required in this process. In cryptography, how-
ever, when we consider adversaries against cryptographic protocols, the default is to assume
only time-bounded adversaries, usually Probabilistic Polynomial Time (PPT) adversaries to

be exact. A natural question arises here:
What bappens if we consider space-bounded adversaries for cryprographic protocols?

One useful tool to study this exact question is the Bounded Storage Model proposed by
Maurer””. In this thesis, we begin by presenting some new constructions in the Bounded
Storage Model and then explore alternative models to better capture space-bounded adver-

saries and give concrete constructions for cryptographic protocols under these new models.

1.1 OUR CONTRIBUTIONS

1.1.1 SIMPLE SCHEMES IN THE BOUNDED STORAGE MODEL

Maurer introduced the Bounded Storage Model " in 1992, where instead of posing con-
straints on the adversary’s computation time, we restrict the memory space that the adversary
can utilize to carry out the attacks. Amazingly, as shown by Maurer”” and a series of follow-
ing works*>**7%7324° the Bounded Storage Model has proven to be an incredibly useful tool
to obtain unconditional security proofs.

Typically, we prove the security of cryptographic protocols conditioned on certain com-
putational problems being hard, e.g. factoring large integers or Learning with Errors (LWE).

We define security in terms of security games for PPT adversaries — if the given protocol is

secure, then the adversary should be able to win the security game with only negligible prob-
ability. And then through reduction proofs, we show that if there exists a PPT adversary that
can win the security game, then it can be efficiently converted to an adversary that solves these
computational problems conjectured to be hard. Unfortunately, with the current state of
complexity theory, the hardness of these problems can at best be conjectured. It turns out that
some of these hardness assumptions, such as inverting a hash function or factoring, will be
broken with the presence of a quantum computer by running Grover’s algorithm °” or Shor’s
algorithm”*. With unconditional security proofs, the security of cryptographic schemes can
be proven without relying on any hardness assumptions. This is possible in the Bounded
Storage Model by having the honest parties exchange a large amount of information while
the adversary has a limited amount of storage to write down only a tiny portion of such com-
municated information. Then using information-theoretic arguments, we elevate the adver-
sary’s lack of knowledge to the security of the scheme.

In the first part of this thesis, we present simple new constructions that are uncondition-
ally secure by utilizing the Bounded Storage model. Concretely, we develop new construc-
tions of two-party key agreement, bit commitment, and oblivious transfer in the Bounded
Storage Model. In addition to simplicity, our constructions have several advantages over
prior work, including an improved and optimal number of rounds and enhanced correct-
ness. Contrary to prior works in the Bounded Storage Model "">*">**7%7**%° which typically
use an argument akin to the birthday paradox, our schemes are based on Raz’s lower bound

for learning parities

1.1.2 DISAPPEARING CRYPTOGRAPHY IN THE BOUNDED STORAGE MODEL

While the Bounded Storage Model has proven to be a useful tool to study space-bounded
adversaries, we find that it has certain limitations too. The first observation we make is that
in the Bounded Storage Model, the space constraints are enforced for the adversary instead
of time constraints, whereas in real life, both computation time and memory space pose as
restrictions to algorithms. So in the second part of this thesis, we address the following ques-

tion:

What security notions can we achieve if we consider adversaries that are both time-bounded

and space-bounded?

It turns out that by combining computational assumptions with space constraints, we
can achieve security notions that are never-before-possible. In the second part of this thesis, we
propose the notion of disappearing cryptography, where acomponent of the transmission, say
aciphertext, a digital signature, or even a program, is streamed bit by bit. The stream is so large
for anyone to store in its entirety, meaning the transmission effectively “disappears” once the
stream stops, while the honest parties can run encryption/decryption/signing/verification as
online algorithms during the streaming. This allows for new security notions that are un-
achievable in the standard model. For instance, in the case of disappearing ciphertexts, we
can achieve security even if the adversary is handed the private key after the streaming of the
challenge ciphertext concludes. This is impossible within the standard model, as the adver-
sary can trivially use the acquired private key to decrypt the challenge ciphertext, and hence
distinguish between the challenge messages. However, with disappearing ciphertexts, even

though the adversary has the private key, there is nothing for the adversary to decrypt, as the

ciphertexts have disappeared after transmission!

In this part of the thesis, we first propose the notion of online obfuscation, capturing
the goal of disappearing programs in the bounded storage model. We give a negative result
for Virtual Black Box (VBB) security in this model, but propose candidate constructions
for a weaker security goal, namely Virtual Grey Box (VGB) security. We then demonstrate
the utility of VGB online obfuscation, showing that it can be used to generate disappearing
ciphertexts and signatures. All of our applications are zot possible in the standard model
of cryptography, regardless of computational assumptions used, and hence demonstrate the

huge potential of combining time and space constraints for adversaries.

1.1.3 INCOMPRESSIBLE CRYPTOGRAPHY

Another observation we make is that in the Bounded Storage Model, the adversary needs to
abide by the storage bound throughout the entire security game. However, in real life, short-
term storage is much more achievable than long-term storage. For instance, it could be much
easier to designate 1 TB of storage for 20 minutes than to keep 100 GB of data for 5 years.
Although 1 TB is a larger space requirement than 100 GB, in the former case one can free
up that space for other usages once the 20 minutes have passed, while in the latter case the
storage, though somewhat smaller, has to be solely dedicated to this purpose for the entire 5
year period. So it seems natural to imagine a model where we only pose restrictions on the
storage that is maintained over an extended period of time.

In the third part of this thesis, we modify the model for disappearing cryptography by
giving the adversary an unbounded amount of storage when the transmission is happening,

and bounding only the adversary’s long-term storage. Here, we ask the following question:

If we give the adversary an unbounded amount of short-term storage, are theve any meaning

security notions that we can achieve?

We answer the question positively by proposing Incompressible Cryptography. Incom-
pressible encryption allows us to make the ciphertext size flexibly large and ensures that an ad-
versary learns nothing about the encrypted data, even if the decryption key later leaks, unless
she stores essentially the entire ciphertext. Incompressible signatures can be made arbitrarily
large and ensure that an adversary cannot produce a signature on 47y message, even one she
has seen signed before, unless she stores one of the signatures essentially in its entirety. The
notions are quite similar to that of disappearing cryptography except that the adversary is
allowed an arbitrary amount of storage during the transmission phase and then compresses
down to a smaller state for long-term storage, which we bound.

In this thesis, we give simple constructions of both incompressible public-key encryption
and signatures under minimal assumptions. Furthermore, large incompressible ciphertexts
(resp. signatures) can be decrypted (resp. verified) in a streaming manner with low storage.
In particular, these notions further strengthen the related concepts of disappearing cryptog-
raphy, the constructions of which rely on sophisticated techniques and strong, non-standard
assumptions. We extend our constructions to achieve an optimal “rate”, meaning the large ci-
phertexts (resp. signatures) can contain almost equally large messages, at the cost of stronger

assumptions.

1.1.4 MULTI-USER INCOMPRESSIBLE ENCRYPTION

The final observation we address in this thesis is the high communication complexity of the

above schemes against space-bounded adversaries. In the Bounded Storage Model, the core

idea is to have the honest parties exchange more information than the adversary’s storage, so
the communication complexity is, by definition, higher than the adversary’s storage bound.
In the case of incompressible cryptography, though the model deviates from the Bounded
Storage Model, it still requires the honest parties to exchange information that is incom-
pressible to the adversary’s bounded long-term storage. By a simple information-theoretic
argument, the size of the honest party communication still needs to exceed the adversary’s
memory bound. So either way, to protect against adversaries with a given memory bound,
each ciphertext/signature produced by the honest parties must be at least that size. This re-
sult seems inevitable, but could be quite undesirable when the message size itself is small. For
instance, say we are trying to protect against adversaries with memory bounds up to 1 TB,
then to send a single “Hello” message, the ciphertext needs to be terabytes in length, which

makes the scheme immensely unusable. Therefore, the question we want to ask here is:

Can we better motivate these schemes against space-bounded adversaries, from a more

practical point of view?

We provide an answer to this question by extending incompressible encryptions to the
multi-user setting. Consider a state-level adversary who observes and stores large amounts of
encrypted data from all users on the Internet, but does not have the capacity to store it all.
Later, it may target certain “persons of interest” in order to obtain their decryption keys. We
would like to guarantee that, if the adversary’s storage capacity is only (say) 1% of the total
encrypted data size, then even if it can later obtain the decryption keys of arbitrary users, it
can only learn something about the contents of (roughly) 1% of the ciphertexts, while the
rest will maintain full security. Under this setting, individual ciphertexts no longer need to

be huge in size. They are aggregated with other ciphertexts from the same and other users,

and as long as the amalgamation exceeds the adversary’s storage, the above security guarantee
holds. In this thesis, We provide solutions in both the symmetric key and public key setting
with various trade-offs in terms of computational assumptions and efficiency.

As the core technical tool, we study an information-theoretic problem which we refer to
as “multi-instance randomness extraction”. Suppose Xj, . . ., X, are correlated random vari-
ables whose total joint min-entropy rate is &, but we know nothing else about their individual
entropies. We choose # random and independent seeds Sy, . . ., S; and attempt to individu-
ally extract some small amount of randomness ¥; = Ext(X;; S;) from each X;. We'd like to
say that roughly an a-fraction of the extracted outputs Y; should be indistinguishable from
uniform even given all the remaining extracted outputs and all the seeds. We show that this

indeed holds for specific extractors based on Hadamard and Reed-Muller codes.

1.2 ORGANIZATION

In Chapter 2, we introduce cryptographic primitives and information theoretic tools that are
used in multiple chapters.

In Chapter 3, we give constructions for two-party key agreement, bit commitment, and
oblivious transfer in the Bounded Storage model.

In Chapter 4, we present the concept of disappearing cryptography. We first devise the
notion of an online obfuscator, and then show how a VGB online obfuscator can be used to
achieve disappearing ciphertexts and signatures.

In Chapter s, we propose incompressible cryptography and develop constructions of in-
compressible public-key encryption and signatures from standard assumptions. We also ex-

tend the constructions to achieve an optimal rate, with the tradeoff of stronger assumptions.

In Chapter 6, we elevate incompressible encryptions to the multi-user setting by replacing
the randomness extractors in the constructions with a new “Multi-Instance Randomness

Extractor”.

1.3 PUBLICATIONS CONTAINED IN THIS THESIS

The results in this thesis are based on the following works:

Simple Schemes in the Bounded Storage Model** , with Mark Zhandry (EUROCRYPT

2019).

* Disappearing Cryptography in the Bounded Storage Model , with Mark Zhandry (TCC

2021).

Incompressible Cryptography’’, with Daniel Wichs and Mark Zhandry (EUROCRYPT

2022).

Multi-Instance Randomness Extraction and Security against Bounded-Storage Mass

Surveillance”’, with Daniel Wichs and Mark Zhandry.

I0

Preliminaries

In this chapter, we give preliminaries that are required across multiple chapters. For prelimi-
naries that are only relevant for a specific chapter, those are given in each chapter’s “Chapter
Preliminaries” section.

Notation-wise, for z € N, we let [#] denote the ordered set {1, 2, ..., n}. We use capital
bold letters to denote a matrix M. Lowercase bold letters denote vectors v. Let M;; denote
the element on the 7-th row, and j-th column of M, and v, denote the 7-th element of v. Fora
bit-string x € {0, 1}", we let x; denote the 7-th bit of x. We use diag(My, . .., M,,) to denote

a matrix with block diagonals My, ..., M,,.

2.1 MIN-ENTROPY EXTRACTOR

Recall the definition for average min-entropy:

Definition 2.1.1 (Average Min-Entropy). Fortwo jointly distributed random variables (X, Y),

the average min-entropy of X conditioned on Y is defined as
H,(X|Y) =— IogEng[mxaxPr[X: %Y =)l].
Lemma 2.1.1 (). Forrandom variables X, Y where Y is supported over a set of size T, we have
Hy(X|Y) > Hyo(X,Y) —log T > Hoo(X) — log T.

Definition 2.1.2 (Extractor *°). 4 function Extract : {0,1}" x {0,1}¥ — {0,1}" isa (k, ¢)
strong average min-entropy extractor if, for all jointly distributed random variables (X,Y)

where X takes values in {0,1}" and Hy(X|Y) > k, we have that (U, Extract(X; Uy), Y)

II

is e-close to (s, U,,, Y), where Uy and U, are uniformly random strings of length d and m re-

spectively.

Remark 2.1.1. 4 ny strong randomness extractoris also a stron g average min-entropy extractor,

with a constant loss in €.

2.2 FuncTioNAL ENCRYPTION

The concept of Functional Encryption (FE) is first raised by Sahai and Waters”" and later
formalized by Boneh, Sahai, Waters ' and O’Neill

Let A be the security parameter. Let {Cy } be a class of circuits with input space X\ and
output space V. A functional encryption scheme for the circuit class {C, } is a tuple of PPT

algorithms FE = (Setup, KeyGen, Enc, Dec) defined as follows:

* Setup(1*) — (mpk, msk) takes as input the security parameter A, and outputs the

master public key mpk and the master secret key msk.

* KeyGen(msk, C) — sk takes as input the master secret key msk and a circuit C €

{C,}, and outputs a function key ske.

* Enc(mpk,m) — ct takes as input the public key mpk and a message m € X}, and

outputs the ciphertext ct.

* Dec(sk¢, ct) — y takes as input a function key sk and a ciphertext ct, and outputs a

value y € Y.

I2

We can analogously define the “rate” of an FE scheme to be the ratio between the message
length to the ciphertext length. We require correctness and security of a functional encryp-

tion scheme.

Definition 2.2.x (Correctness). 4 functional encryption scheme FE = (Setup, KeyGen, Enc, Dec)

is said to be correct if for all C € {Cp\} and m € X)y:

(mpk, msk) < Setup(1*)
skc + KeyGen(msk, C)
Pr |y = C(m) : > 1 — negl(\).
ct < Enc(mpk, m)

y < Dec(skg, ct)

Consider the following Semi-Adaptive Security Experiment, Dist,S:eETi\Adpt (A):

* Run FE.Setup(1*) to obtain (mpk, msk) and sample a random bit 4 « {0, 1}.

* Oninput1* and mpk, The adversary A submits the challenge query consisting of two

messages 729 and 72;. It then receives ct <— FE.Enc(mpk, 7z;).

* The adversary now submits a circuit C € {Cy} s.t. C(mg) = C(m), and receives

sk <— FE.KeyGen(msk, C).

* The adversary A outputs a guess &' for b. If &' = b, we say that the adversary succeeds

and experiment outputs 1. Otherwise, the experiment outputs 0.

Definition 2.2.2 (Single-Key Semi-Adaptive Security). For security parameter N\, a func-

tional encryption scheme FE = (Setup, KeyGen, Enc, Dec) is said to have single-key semi-

13

adaptive security if for all PPT adversaries A :

Pr [Distgg P (A) = 1] < -+ negl().

| =

We can also consider selective security, where the adversary only receives mpk after send-
ing the challenge messages. We can also consider many-time semi-adaptive/selective security,
where the adversary is able to adaptively query for as many sk as it would like, provided they

all occur after the challenge query.

14

Simple Schemes in the Bounded Storage

Model

3.1 INTRODUCTION

For the vast majority of cryptographic applications, security relies on the assumed hardness
of certain computational problems, such as factoring large integers or inverting certain hash
functions. Unfortunately, with the current state of complexity theory the hardness of these
problems can only be conjectured. This means that the security of such schemes is always
conditional on such conjectures being true.

Maurer proposes the Bounded Storage Model ” as an alternate model for constraining
the adversary; here, instead of constraining the adversary’s time, the adversary’s memory
is bounded. Amazingly, it is actually possible to give unconditional proofs of security for
schemes in this model. The core idea is that the honest parties exchange so much information
that the adversary cannot possibly store it all. Then, schemes are cleverly devised to exploit
the adversary’s lack of knowledge about the scheme.

Moreover, the space bounds are only necessary when the protocol is run, and even if the
adversary later gains more space the protocol remains secure. This means schemes only need
to be designed with current storage capacities in mind. This is fundamentally different than
the usual approach of time-bounding adversaries, where an adversary can later break the pro-
tocol if its computational abilities increase. Hence, traditional schemes must be designed
with future computational abilities in mind. This is especially important in light of recent
developments in quantum computing, as Grover’s algorithm ** and Shor’s algorithm** can
speed up attacks on many current cryptographic protocols. Hence, much of the communi-
cation taking place today will be revealed once quantum computers become reality.

In this chapter, we devise very simple round-optimal protocols for bit-commitment and

16

oblivious transfer (namely, 1 round and 2 rounds, respectively) in the Bounded Storage Model,
improving s rounds needed in prior works. We additionally develop a new key agreement
protocol with several advantages over prior works. Our results rely on Raz’s recent space
lower bound for learning parities ", and in particular the simple encryption scheme based on
this lower bound. Our key observation is that Raz’s encryption scheme has several useful
properties — including additive homomorphism and leakage resilience — that can be useful
for building higher-level protocols. Our core technical contribution is a new “encrypt zero”
protocol for Raz’s encryption scheme, which may be of independent interest.

Our schemes are based on entirely different techniques than most of the prior literature
— most of which is based on the birthday paradox — and we believe this result will therefore

be a useful starting point for future work in the bounded storage model.

3.1.1 PRIOR WORK IN THE BOUNDED STORAGE MODEL

Prior work in the Bounded Storage Model "7>*7>*%7%7324° typically uses something akin to the
birthday paradox to achieve security against space-bounded adversaries.

In slightly more detail, the key agreement scheme of Maurer”” works as follows. One
party sends a stream of roughly »* random bits to the other party *. Each party records a
random secret subset of 7 bits of the stream. By the birthday paradox, the two parties will
have recorded one bit position in common with constant probability. They therefore share
the bit positions they recorded with each other, and set their secret key to be the bit of the

stream at the shared position.

*In most works in the Bounded Storage Model, the random bit stream is assumed to come from a trusted
third party. Here we will insist on there being no trusted third party, and instead the bit stream comes from the
parties themselves.

17

An eavesdropper first sees 7> random bits. If the eavesdropper’s storage is somewhat
lower than 72, he cannot possibly remember the entire sequence of random bits. In particu-
lar, it can be shown that the adversary has little information about the bit shared by the two
honest parties. This remains true even after the parties share their bit positions. Notice that
the honest parties require space 7, and security holds even for adversaries with space Cn? for
some constant C. Therefore, by tuning 7 so that z storage is feasible, but Cn? is not, one
obtains the desired security.

Much of the literature on the Bounded Storage Model relies on this sort of birthday at-

tack property. Unfortunately, this leads to several difficulties:

* The two honest parties only achieve success with constant probability. In order to
achieve success with high probability, the protocol either needs to be repeated many
times (thus requiring more than 7> communication) or requires the honest users to
store more than 7 positions (thus requiring more than 7 space, and making the gap

between the honest users and adversaries less than quadratic).

* Remembering 7 random positions out of 7* requires O(7 log) space just to record
the indices. To compress the space requirements of the honest parties, the positions are

actually chosen by a pairwise independent function, complicating the scheme slightly.

* Theadversary hasal/n* chance of guessing the bit position shared by the two users. As
such, the adversary has a non-negligible advantage in guessing the bit. To get statistical
security, a randomness extraction step is applied, adding slightly to the complexity of

the protocol.

* More importantly, there is very little structure to exploit with the birthday approach.

18

For more advanced applications such as oblivious transfer or bit commitment, the pro-

tocols end up being somewhat complicated and require several rounds.

3.1.2 SPACE LOWER BOUNDS FOR LEARNING PARITIES

In this chapter, we exploit recent space lower bounds due to Raz™". Raz considers a setting
where one party holds a secret key k € {0, 1}", and streams random tuples (r;, r; - k), where
r;is random in {0, 1}” and the inner product is taken mod 2. Raz asks: given these random
tuples, and only limited storage (namely Cn* for some constant C), how hard is it to recover
k? Clearly, if C =~ 1, then one can store # tuples, and then recover k using linear algebra. But
if C < 1, then the adversary has no hope of storing enough tuples to perform linear algebra.

Raz proves that, for some constant C (roughly 1/20), then either the adversary needs an
exponential (in) number of samples, or the adversary’s probability of correctly guessing k
is exponentially small.

Raz observes that his lower bound easily leads to a secret key encryption scheme in the
bounded storage model. The key will be an 7-bit string k. To encrypt a message bit &, choose
arandom r, and produce the ciphertext (r,r - k @ b). Raz’s lower bound shows that after
seeing fewer than exponentially many encrypted messages, an adversary with Cn? space has
an exponentially small probability of guessing k. This means k always has some min-entropy
conditioned on the adversaries’ view. Then using the fact that the inner product is a good
extractor, we have that for any new ciphertext r - k is statistically close to random, and hence

masks the message b.

I9

3.1.3 OUR CONSTRUCTION

In this chapter, we use Raz’s scheme in order to develop simple new constructions in the
Bounded Storage Model that have several advantages over prior work.

Our main observation is that Raz’s encryption scheme has several attractive properties.
First, it is leakage resilient: since inner products are strong extractors, the scheme remains
secure even if the adversary has partial knowledge of the key, as long as the conditional min-
entropy of the key is large.

Next, we note that Raz’s scheme is additively homomorphic: given encryptions (ro, ro -
k® my) and (ry, 11 -k my) of myg, my, we can compute an encryption of 7o @ m; by simply
taking the componentwise XOR of the two ciphertexts, yielding (ry & 11, (ro & 1;) - k @
(mo @ my)). This additive homomorphism will prove very useful. We can also toggle the bit
being encrypted by toggling the last bit of a ciphertext.

For example, Rothblum *° shows that any additively homomorphic secret key encryption
scheme can be converted into a public key (additively homomorphic) encryption scheme.
The rough idea is that the public key consists of many encryptions of zero. Then, to devise
an encryption of a bit », simply add a random subset sum of the public key ciphertexts to
get a “fresh” encryption of zero, and then toggle the encrypted bit as necessary to achieve an

encryption of .

KeY AGREEMENT. In the case of Raz’s scheme, the public key will end up containing O(#)
ciphertexts, meaning the public key is too large for the honest users to even write down. How-
ever, we can re-interpret this protocol as a key-agreement protocol. Here, the public key is

streamed from user A to user B, who applies the additive homomorphism to construct the

20

fresh encryption on the fly. Now one party knows the secret key, and the other has a fresh
ciphertext with a known plaintext. So the second party just sends the ciphertext back to the

first party, who decrypts. The shared key is the plaintext value.

Bir CoMMITMENT. Next, we observe that the public key encryption scheme obtained
above is committing: for any public key there is a unique secret key. Therefore, we can use
the scheme to get a bit commitment scheme as follows: to commit to a bit 4, the Committer
simply chooses a random secret key, streams the public key to the receiver, and then sends an
encryption of b. To open the commitment, the Committer simply sends the secret decryp-
tion key. The Verifier, on the other hand, constructs several fresh encryptions of 0 by reading
the Committer’s stream, as user B did in our key agreement protocol. Upon receiving a sup-
posed secret key, the Verifier checks that all the encryptions do in fact decrypt to 0. If so, then

it decrypts the commitment to get the committed value.

OBLIVIOUS TRANSFER. We can also turn this commitment scheme into an oblivious trans-
fer protocol: the Receiver, on input &, commits to the bit . Then the Sender, on input xg, 1,
using the homomorphic properties of the encryption scheme, turns the encryption of 4 in
the commitment into encryptions of (1 — 4)xg and bx;. To maintain privacy of x1_, the
Sender will re-randomize the encryptions, again using the homomorphic properties. To re-
randomize, the Sender will construct some fresh encryptions of zero, again just as user B did
in our key agreement protocol. The Receiver can then decrypt these ciphertexts, which yield

0 and x;,.

21

Maticious SECURITY. The commitment scheme and the oblivious transfer protocol are
secure as long as the public key is generated correctly. This occurs, for example, if the ran-
domness for the encryptions of 0 is generated and streamed by a trusted third party. This is
the setting considered in much of the prior work in the bounded storage model.

On the other hand, if we do not wish to rely on a trusted third party to generate the en-
cryption randomness, a malicious Committer can choose a public key with bad randomness,
which will allow him to break the commitment, as explained below. This also would let the
Receiver break the security of the oblivious transfer protocol. We therefore additionally show
how to modify the constructions above to obtain security for malicious parties without rely-
ing on a trusted third party. The result is round-optimal protocols for bit-commitment and

oblivious transfer without a trusted third party.

3.1.4 ADDITIONAL TECHNICAL DETAILS

THE ENCRYPT ZERO PROTOCOL. Notice that all of our schemes have a common feature:
one user hasa secret key, and the other user obtains encryptions of 0. Importantly for security,
these encryptions of 0 should be independent of the view of the first user.

In order to unify our schemes, we abstract the common features required with an Encrypt
Zero protocol for Raz’s encryption scheme. The goal of the protocol is to give one party, the
Keeper, arandom key s, and another party, the Recorder, A random encryptions {ci, . .., e\ }
of 0. Here, A is a parameter that will be chosen based on application. Recorder security
dictates that the Keeper learns nothing about the A encryptions stored by the Recorder (aside
from the fact that they encrypt 0). Keeper security requires that the min-entropy of the key s

conditioned on the Recorder’s view is (). We additionally require that the Keeper’s space

22

is O(n) (which is optimal since the Keeper must store a secret key of O(%) bits), and the
Recorder’s space is O(An) (which is also optimal, since the Recorder must store A encryptions
of O(n) bits each).

Our basic protocol for Raz’s scheme works as follows:

* The Keeper chooses a random key k € {0,1}”. Let m = O(n) be a parameter. The

Recorder chooses a secret matrix ¥ € {0, 132%™,

* The Keeper streams 7 encryptions (r;, 2; = r; - k + 0) to the Recorder, for random
r; € {0,1}”and7 = 1,2,..., m. From now on, we use the convention that “+” and

« »

are carried out mod 2.

* The Recorder maintains matrix ¥ € {0, 1}**” and column vector & € {0, 1}*. Each
row of (¥|k) will be a random subset-sum of the encryptions sent by the Keeper, with
each subset-sum chosen according to 3. The matrices will be computed on the fly. So
when (r;, ;) comes in, the Recorder will map ¥ — ¥ + o, - 1, K — K + 0,4,

Here, 0, is the 7-th column of X, and r; is interpreted as a row vector.

¢ Attheend of the protocol, the Keeper outputsits key s = k, and the Recorder outputs

(¥|k), whose rows are the ciphertexts ¢, . . . , ¢y

Let R be the matrix whose rows are the r,’s, and let a be the column vector of the 4,’s.
Then we have thata = R -k, W = X - R,and k = ¥ - a = W - k. Hence, the rows of
(¥|k) are encryptions of zero, as desired.

For Keeper security, Raz’s theorem directly shows that k has min-entropy relative to the

Recorder’s view. For Recorder security, notice that X is independent of the the Keeper’s

23

view. Therefore, if the Keeper follows the protocol and # is slightly larger than 7 so that R
is full rank with high probability, then W is a random matrix independent of the adversary’s
view. Therefore the ciphertexts ¢; are actually random encryptions of 0. Thus we get security

for honest-but-curious Keepers.

Key AGREEMENT. This protocol gives a simple key-agreement scheme. Basically, one party
acts as the Keeper, and one as the Recorder. We set A = 1. The result of the Encrypt Zero
protocol is that the Recorder contains a uniformly random encryption of 0. The Recorder
simply flips the bit encrypted with probability 1/2 to get a random encryption of a random
bit 4, and sends the resulting ciphertext to the Keeper. The Keeper decrypts, and the shared
secret key is just the resulting plaintext &.

Security of the protocol follows from the fact that after the Encrypt Zero protocol, the
Keeper’s key has min-entropy relative to any eavesdropper (since the eavesdropper learns no
more than the Recorder). Moreover, the Keeper acts honestly, so the final ciphertext is always
afresh encryption. Finally, the encryption scheme is leakage resilient so it hides the bit & even
though the adversary may have some knowledge of the key.

Notice that this scheme has perfect correctness, in that the two parties always arrive at a
secret key. This is in contrast to the existing schemes based on the birthday paradox, where
security is only statistical, and moreover this holds only if the adversary’s space bounds are
asymptotically smaller than n?. In contrast, we get perfect correctness and statistical security

for adversarial space bounds that are O(n*). The honest users only require O(7) space.

Bit CoMMITMENT. We now describe a simple bit-commitment protocol using the above

Encrypt Zero protocol. Recall thatin a bit-commitmentscheme, there are two phases: a com-

24

mit phase where the Committer commits to a bit 4, and a reveal or de-commit phase where
the Committer reveals & and proves that & was the value committed to. After the commit
phase, we want that the bit 4 is hidden. On the other hand, we want the commit phase to be
binding, in that the Committer cannot later change the committed bit to something else.
The Committer and the Verifier will run the Encrypt Zero protocol, with Committer

playing the role of Keeper and Verifier the role of Recorder. The protocol works as follows:

* Run the Encrypt Zero protocol, giving the Committer a random key s and the Verifier

A random encryptions ¢; of 0.
* The Committer then sends an encryption of 4 relative to the key s.

* To open the commitment, the Committer sends s. The Verifier checks that s correctly

decrypts all the ¢; to 0. If so, it decrypts the final ciphertext to get &.

The security of the Encrypt Zero protocol and the leakage resilience of the encryption
scheme show that this scheme is hiding. For binding, we note that an honest Committer
will have no idea what encryptions ¢; the Verifier has. As such, if the Committer later tries
to change its committed bit by sending a malicious key s, " will cause each ciphertext ¢; to
decrypt to 1 with probability 1/2. Therefore, the Committer will get caught with probability
1—27A

Already, this gives a very simple protocol for bit commitment that is non-interactive; in
contrast, the prior work of Ding ez al.*° required five rounds. One limitation is that we re-
quire the Committer to behave honestly during the commit phase. For example, if the Com-

mitter chooses R to be low rank, then the encryptions obtained by the Verifier will not be

25

independent of the Committer’s view, and hence the Committer may be able to cheat dur-
ing the de-commit phase.
To get around this, we tweak the Encrypt Zero protocol slightly to get security even

against malicious Keepers. Our Enhanced Encrypt Zero protocol is as follows:

The Keeper chooses arandom key k € {0,1}” and an independent random secret s €

{0,1}”. We will let 7 = 2n. The Recorder chooses a secret matrix 32 € {0, 1},

The Keeper streams random encryptions of the bits of 5, We will write this in matrix

formas (R,a=R -k +35).

The Recorder computes ¥ = 3 - Rand k = 3 - a.

The Keeper then sends its key k 2% the clear.

The Keeper outputs its secret s as the key, and the Recorder outputs (X, K — ¥ - k).

Notice that k — W -k = X -5, alist of A encryptions of 0 relative to the key s, as desired.
Moreover, these encryptions are random encryptions, even if R is chosen adversarially by the
Keeper, since the Keeper has no knowledge or control over X.

To prove the min-entropy of s relative to a malicious Recorder, we note that the real-
or-random CPA security of the encryption scheme shows that just prior to receiving k, the
Recorder has essentially no information abouts. Then, since k is 7 bits, revealing it can only
reveal 7 bits of's. But s is a uniformly random 7 = 2z bit string, meaning it has roughly 7
bits of min-entropy remaining, as desired. Thus we get both our security properties, even for

malicious parties.

26

Our Enhanced Encrypt Zero protocol roughly doubles the communication, but other-
wise maintains all the attractive properties of the original scheme: it is non-interactive and

has perfect correctness.

Putting it all together, our bit commitment protocol is the following:

* To commit to a bit &, the Committer streams R, a = R - k + s followed by k, v, ¢ =

~ - s+ bforrandom R, ks, 7.

* The Verifier records ¥, ¥ = 3 - R,k = X - a for a random choice of 33, and then

once k comes initcomputesp = kK — ¥ -k =3 -s.

* To reveal the bit 4, the Committer just sends x = s.

The Verifier checks that ¢ = X - x. If so, it computes &' = ¢ — 7y - x.

OsBLIvVIOUs TRANSFER. We now turn to constructing an oblivious transfer (OT) proto-
col. In an OT protocol, one party, the Sender, has two input bits xy, x;. Another party, the
Receiver, has a bit 4. The Receiver would like to learn x;, without revealing 4, and the Sender
would like to ensure that the Receiver learns nothing about x;_,.

In our protocol, the Receiver will play the role of Committer in our commitment scheme,
committing to its input 4. The Sender will play the role of Recorder in the Encrypt Zero
protocol, setting A = 2. The hiding property of the commitment scheme ensures that the
space-bounded Sender learns nothing about the Receiver’s bit 4.

At the end of the Receiver’s message, the Sender has an encryption (v, ¢* = v -s+ &) of

b with secret key s. Additionally, it also has two encryptions of 0, namely (o7, co = o - s)

27

and (0, ¢ = oy - s) for random vectors o, 0. Importantly, 0y, 0 are independent of the
Receiver’s view, as they were chosen by the Sender.

The Sender will now exploit the additive homomorphism of the encryption scheme once
more. In particular, it will compute encryptions of (1 — &)x, and &x;, which it will then send
back to the Receiver. To compute an encryption of bxy, it simply multiplies the ciphertext
(7, ¢") by x;. Similarly, to compute an encryption of (1 — &)y, it toggles ¢* (to get an encryp-
tion of 1 —) and then multiplies the entire ciphertext by x.

Now clearly these two ciphertexts reveal both xy and x;, so the Sender cannot send them
directly to the Receiver. Instead, it will 7e-randomize them by adding the two encryptions of

0. Now it obtains fresh encryptions of (1 — &)xo and bx;:

oo+ %7, C()“‘.X'()(l —C*) = (0'0 +X()’Y) -s+ ((1 — b)x0>

0'1+X1")’, 61+X1€* :(0'1+X17>S+(bxl)

It sends these ciphertexts to the Receiver, who then decrypts. All the Receiver learns then
is (1—&)x and bx;. One of these plaintexts will be x; as desired, and the other will be 0. Thus,

the Receiver learns nothing about x;_.

Our protocol is round-optimal, since it involves only a single message in each direction.
This improves on the best prior work of Ding ez al.*° requiring 5 rounds. Additionally, our

protocol is much simpler than the prior work.

2.8

3.1.5 OTHER RELATED WORK

A separate work by Ball ez al.* shows another application of Raz’s encryption scheme, where
they use it to construct unconditional non-malleable codes against streaming, space-bounded

tempering.

3.2 CHAPTER PRELIMINARIES

Here, we recall some basic cryptographic notions, translated into the setting of the bounded
storage model. In the following definitions, 7 will be a security parameter.

A symmetric encryption scheme is a pair of algorithms IT = (Enc, Dec) with an associ-
ated key space KC,,, message space M, and ciphertext space C,. Notice that the key space and

ciphertext space depend on 7; the message space will not depend on 7. We require that:
* Enc: K, x M — C, is a probabilistic polynomial time (PPT) algorithm
* Dec: K, x C, — M is adeterministic polynomial time algorithm.

* Correctness: for any £ € K, and any message m € M,

Pr[Dec(k, Enc(k, m)) = m] = 1.

Additionally, we will require a security notion. In this chapter, we will focus on the fol-

lowing notion.

Definition 3.2.1 (Real-or-Random-Ciphertext (RoRC) Security). Let A be an adversary.
A plays the following game RoRC 4 11 4(n, q):

29

The challenger’s input is a bit b € {0,1}.

The challenger chooses a random key k € K,0

A makes q adaptive queries on messages my, . .. ,m, € M.
* In response to each query, the challenger does the following:

— Ifb = 0, the challenger responds with ¢; <— Enc(k, m;).

— If b =1, the challenger responds with a random ciphertext ¢; € C,.

Finally, A outputs a guess t/ for b.

We say that 11 is (S(n), Q(n), €)-secure if for all adversaries that use at most S(n) memory

bits and Q(n) queries (i.e. ¢ < Q(n)),

| Pr[RoRC 4 11,0(72,9) = 1] — Pr[RoRC 4 111(7,9) = 1]| < e.

In this chapter, alot of the proofs are based on the Leftover Hash Lemma for Conditional
Min-Entropy due to Impagliazzo, Levin, and Luby .

For random distributions X and Y, let H (X]Y) denote the min-entropy of X condi-
tioned on Y. Let X =, Y denote that the two distributions are e-close, i.e. the statistical
distance between these two distributions A(X, Y) < e. Furthermore, let U,, denote a uni-

formly distributed random variable of 72 bits for some positive integer 7.

Lemma 3.2.1 (Leftover Hash Lemma for Conditional Min-Entropy). Let X, E be a joint
distribution. If Hyo (X|E) > k, and m = k — 21og(1/€), then

(H(X)vHaE) %6/2 (Uma UdaE)y

30

where m is the output length of a universal hash function H, and d is the length of the description

of H

3.3 Raz’s ENCRYPTION SCHEME

Our constructions of the commitment scheme and the oblivious transfer scheme are largely
based on the bit encryption scheme from parity learning proposed by Raz"™*. Raz sketches
how his lower bound for learning implies the security of his encryption scheme. Below we

reproduce the construction of the encryption scheme, and formalize the security proof.

Construction 3.3.1 (Bit Encryption Scheme from Parity Learning). For a given security pa-
rameter n, the encryption scheme consists of a message space M = {0, 1}, a ciphertext space
C, = {0,1}” x {0,1}, a key space K,, = {0,1}", and a pair of algorithms 11 = (Enc, Dec)

as specified below:

* Enc(k, m € M): Samples a random row vector r <— {0,1}", computesa = r -k + m,

and outputs the ciphertext c = (r, a) as a pair.
* Dec(k,c = (r,a) € C,): Computes and outputs m' = r - k + a.

To prove Real-or-Random-Ciphertext security of the above scheme, we rely on a result

from Raz"", reproduced below.

Lemma 3.3.1 (). Forany C < 21—0, there exists o > 0, such that: for uniformk € {0,1}”,
m < 2%, and algorithm A that takes a stream of (1, 1), (X2,92); - - > (X0, V), where x; is
a uniform distribution over {0,1}" and y; = x, - k for every i, under the condition that A uses

at most Cn* memory bits and outputs k € {0,1}", then Prk = k] < O(27°7).

31

We also rely on the Goldreich-Levin Algorithm, reproduced below.
Lemma 3.3.2 (Goldreich-Levin Algorithm *°). Assumethat there exists a functionf: {0,1}" —
{0, 1} s.z. for some unknown x € {0,1}", we have

1
p - > -
re{O’rl}ﬂ[]‘(r) (x,1)] > 5 +e€

fore > 0.
Then there exists an algorithm G L that runs in time O(n*e~* log n), makes O(ne*logn)

orcale queries into f; and outputs x with probability Q(€*).

Instead of directly proving RoRC security of the encryption scheme, we prove Modi-
fied Real-or-Random-Ciphertext (RoRC’) security, which differs from RoRC security in
that for all but the last query, the challenger always responds with the valid encryption of
the messsage; for the last query, the challenger responds either with a valid encryption or a

random ciphertext, each with probability 1/2. A detailed definition is given below.

Definition 3.3.1 (Modified Real-or-Random-Ciphertext (RoRC’) Security). Let A be an

adversary. A plays the following game RoRC' 4 11,(7, 9):

The challenger’s input is a bit b € {0,1}.

The challenger chooses a random key k € IC,.

A makes q adaptive queries on messages my, . .. ,m, € M.

* In response to query m; with 1 < i < g — 1, the challenger responds with ¢; <

Enc(k, m;).

32

* In response to query my, the challenger does the following:

— If b = 0, the challenger responds with ¢, <— Enc(k, m,).

— Ifb = 1, the challenger responds with a random ciphertext ¢, € C,.
* Finally, A outputs a guess b/ for b.
We say that 11 is (S(n), Q(n), €)-secure if for all adversaries that use at most S(n) memory
bits and Q(n) queries (i.e. ¢ < Q(n)),

| Pr[RoRC’ 4 11,0(72,9) = 1] — Pr[RoRC 4 114(72,9) = 1] < e.

We now show that RoRC’ security implies RoRC security.

Lemma 3.3.3. An encryption scheme that is (S(n),Q(n),€)-secure wunder the

RoRC’setting is (S(n), Q(n), Q(n)€)-secure under the RoRC setting.

Proof. We prove this using a hybrid argument. For any ¢ < Q(#), consider the hybrid secu-

rity games Hy, Hj, . . ., H,, where H; describes the following hybrid game:

The challenger chooses a random key £ € IC,,.

A makes ¢ adaptive queries on messages 71, . . ., m, € M.
* Inresponse to query 7, with1 < 7 < j, the challenger responds with ¢; <— Enc(k, m;).

* In response to query m; with j +1 < 7 < g, the challenger responds with a random

ciphertext¢; € C,,.

33

Particularly, notice that Hj corresponds to a game where the challenger always responds
with random ciphertexts, and that A, corresponds to a game where the challenger always
responds with valid encryptions of the messages. In that way, the RORC 4 11,(7, 4) game is
equivalent to distinguishing A, from H.

To put this formally, let D be an arbitrary distinguisher, and » <— H; denote a randomly

sampled instance of the game /;, we have

|Pr[RoRC 4 11,0(%,9) = 1] — Pr[RORC g 111(72,q) = 1]|

h<H, h<—Hy

mw@:w—mw@:ﬂ.

By the hybrid argument, there exists 7, s.t. 0 < j < g and

mm@:m—mm@:ﬂgq

h(—Hq hHHo

Pr [D(h) =1 — Pr [D(h) =1]|.

b <—1‘1j+ 1 b <—]‘1]

To distinguish between /;, and H;, consider the following security game Dist 4 11,5 (n,9.7):

The challenger’s inputisabit b € {0,1}.

The challenger chooses a random key £ € IC,,.

A makes g adaptive queries on messages 7, . . ., m, € M.

* Inresponse to query 7, with1 < 7 < j, the challenger responds with ¢; <— Enc(k, m,).
* In response to query 2,1, the challenger does the following:

— If b = 0, the challenger responds with ¢;; <= Enc(k, m41).

34

— It b = 1, the challenger responds with a random ciphertext ¢;;; € C,.

* In response to query m2; with 7 + 1 < 7 < g, the challenger responds with a random

ciphertext¢; € C,.
* Finally, A outputs a guess &' for b.

This directly gives us

Pr [D(h) =1 — Pr [D(h) = 1]

/9(—[‘[]'+1 }J(—[—[/

= |Pr[Dist 4 11,0(7, q,j) = 1] — Pr[Dist 4 111(%,9,7) = 1] .

Next, we show that we can use an adversary A for the Dist 4 11 4(7, ¢, /) game to construct
an adversary A’ for the RoRC’ 4/ 11(7, 7 + 1) game. Notice that the only difference between
RoRC’ 4 114(7,7+1) and Dist 4 11,4(7, ¢, /) is that Dist 4 11 4(72, 4, /) has (9—j—1) extra queries
attheend. Anadversary A’ for RORC' 4 11 (7, j+1) can simulate Dist 4 11,,(7, 9, /) for adver-
sary A by forwarding each of A’s first (7 + 1) queries to the challenger in RORC’ 4/ 11 (72, 7 +
1), and similarly forward the responses from the challenger back to A. For the additional
(¢ — j — 1) queries in the end, A’ can simply respond by drawing random ciphertexts from
C,. A’ will output whatever is output by A.

Notice that adversary A’ does ot require any additional memory space besides the space
used by adversary A. All that A" needs to do is to forward A’s queries and the challenger’s
responses, and to sample random ciphertexts from C,. These operations do not require A’

to store any persistent states.

35

Therefore, we have

|Pr[Dist 4 11,0(7,4,7) = 1] — Pr[Dist 4 11,1(7,9,7) = 1]|

< |Pr[RoRC’ 4 110(72,7 + 1) = 1] — Pr[RoRC’ g1 (7,7 + 1) = 1]| .

Bringingall these parts together, assuming that the encryption scheme I1is (S(%), Q(n), €)-

secure yields

|Pr[RoRC 4 11,0(7,4) = 1] — Pr[RoRC 4 11,1(72, q) = 1]|

Pr [D(h) =1 — Pr [D(h) = 1}‘

h<H, h<Hy
< — 1] - —
<q|, B [D() =1~ P D) =1]

=¢ |Pr[Dist 4 11,0(7,¢9.7) = 1] — Pr[Dist o 111(7,9,7) = 1]|

<q |Pr[RoRC 4 110(n,j + 1) = 1] — Pr[RoRC' 4111 (7,j + 1) = 1]|

<ge < Q(n)e.

Therefore, ITis (S()), Q(), Q(7)€)-secure under the RoRC setting.
O

L

Theorem 3.3.1. Forany C < 5,

there exists o > 0, s.t. the bit encryption scheme from parity

learning is (Cn?, 2" O(27%"/2))=secure under the RoR C’ setting.

Proof. We prove this result by reducing a parity learning game to an RoRC’ game.

To start off, we consider a weaker variant of the parity learning game described in Lemma

36

3.3.1, denoted as PL 4 4 (7, 9):

The challenger’s inputisabit 4 € {0,1}.

The challenger chooses a random k € {0,1}".

The challenger streams (xy, y1), (X2,%2), - - -, (xq_l, yq_l), where x; is uniformly dis-

tributed over {0,1}” and y; = x; - k forall 7.

The challenger sends (x,, y,), where x, is uniformly distributed over {0,1}" and:

- Itb=0,y,=x, k.

— It b =1, y, is a random bit.

Finally, A outputs a guess &' for b.

We now show how we can use an adversary A for RoRC’ 4 11,,(7, g) to build an adversary

A’ for PL 4 4(n, g). The adversary A" works as follows:
¢ Simulate for A an RoRC' 4 11 (%, g) game.

* For every query 7, submitted by A, respond with (x;, y; + ;) where x; and y; come

from the 7-th pair of the PL 4 ;(7, ¢) game.
* If the adversary A outputs 0, output 0. Otherwise, output 1.

This should be easily verifiable. First, notice that A’ faithfully simulates RORC’ 4 11 4(72, 9).
Forl <7 < g —1, Areceives (x;,y; + m;) = (x;,X; - k + m,), which is a valid encryption
of m;. Also, for the last query m,, A receives either (x,,y, + m,) = (x,,%, - k + m,), ie.

a valid encryption, or (xq, Vgt mq) for a random bit y,, i.e. a random ciphertext. Secondly,

37

it A outputs 0, that implies (x,,y, + m,) = Enc(k, m,) = (x,,x, - k + m,), and hence
9, = %, - kand A’ should output 0. Lastly, if A outputs 1, we have y, + m, being a random
bit. Since mz, is fixed, we have y, a random bit and hence A’ should output 1.

This yields

IPr[RORC 4.11.0(,) = 1] — Pr[RoRC’ 4111(, 4) = 1]|

<|Pr[PLao(7,9) = 1] — Pr[PL41(n,q) =1]|.

Let § = |Pr[PLao(7,9) = 1] — Pr[PL41(7,q) = 1]|. Then we have an algorithm that
distinguishes between (x,,y, = x, - k) and (x,,y, < {0,1}) with probability (1 + 3)/2,
i.e. it outputs 0if y, is a valid inner product and 1 if it is random. This can be easily converted
into an algorithm that given x,, outputs x,, - k with probability (1 + 3)/2 (simply XOR the
output of the previous algorithm with y,). Let fbe the function computed by this algorithm.
Then for given x, € {0,1}" and unknown k € {0,1}", Ax,) = (k, x,) with probability
(1+)/2. By applying Lemma 3.3.2, there is an algorithm that runs in time O(n*3~* log n)
and outputs k with probability at least 2(3?).

Recall from Lemma 3.3.1 that for any C < 1/20, there is a positive o such that any
potentially computationally unbounded algorithm that uses up to Czn* memory bits and has
access to at most 2” (x;, y;) pairs can output k with probability at most O(27**). Therefore,
for adversaries that are space-bounded by C#? bits and submit at most 2*” queries, (%) <
0(27°"). And hence 8 = 0(27%/?)

Therefore, for any C < 1/20, there is a positive v such that for all adversaries that use at

38

most Cn* memory bits and at most 2°” queries (¢ < 2%”), we have

|Pr[RoRC’ 4 11,0(7,9) = 1] — Pr[RoRC’ 4 114(n,9) =1]| < f = 0(2-"/2),

i.e. the schemeis (Cn?, 29", O(27%"/2))-secure under the RoRC’ setting as desired.

]

Corollary 3.3.1 (RoRC Security of the Bit Encryption Scheme from Parity Learning). For

anyC < %, thereexists o > 0, s.t. the bit encryption scheme from parity learning is (Cn?, 20m/4
O(279%/2))=secure under the RoRC’ setting (here we further bound the number of queries to

an/4 instead of an). By Lemma 3.3.3, this scheme is also (Cn?, p0n/4 pan/t . Q(27o/?) =

1

20 there exists

O(27"/%))=secure under the RoRC setting. Put another way, for any C <
o/ (= a/4) > 0, s.t. the bit encryption scheme from parity learning is (Cn?, 2%, O(27%"))-

secure under the RoR C setting.

3.4 ENCRYPT ZERO PROTOCOLS

In this section, we introduce two constructions of the Encrypt Zero Protocol. They both
have the same goal: to give one party, the Keeper, a random key s, and the other party, known
as the Recorder, several encryptions of 0 under the key s. They differ in that the simple con-
struction is only secure against honest-but-curious Keepers, while the enhanced construction
is secure even against malicious Keepers.

Before we jump into the constructions, we first define an Encrypt Zero Protocol and its
security properties.

An Encrypt Zero Protocol II involves two parties, a Keeper K and a Recorder R. The

39

protocol takes three parameters 7, m = O(n) and A, and produces (s, {c1, ¢, . . ., €1 }, trans),
where s is a random key output by IC, {¢1, ¢z, . . . , o } is a set of ciphertexts output by R, and
trans is the transcript of their communication.

The correctness of an Encrypt Zero Protocol requires that the set of ciphertexts output
by R are encryptions of zero under the key s output by K. Put formally, we require that
Dec(s,¢;) = 0 forall 7.

Now, we define two desired security properties for the Encrypt Zero Protocol, namely
Keeper security and Recorder security.

The security of the Keeper ensures that the Keeper’s key s has enough min-entropy con-

ditioned on the Recorder’s view views.

Definition 3.4.1 (Keeper Security). Let the view of the Recorder be viewr, we say that a pro-

tocol 1145 (S(n), b)-secure for the Keeper if for all Recorders R that use up to S(n) memory bits,

Ho(s|viewg) > b.

The security of the Recorder ensures that the Keeper learns nothing about ¢, ¢z, . . . , ¢y
(except that they are encryptions of zero).

For an honest-but-curious Keeper K, this means that given all the Keeper’s randomness
and the transcript produced by the protocol, it is hard to distinguish the output ciphertexts

(¢c1,¢2,- .., ¢\) from some random ciphertexts that encrypt zero.

Definition 3.4.2 (Recorder Security with Honest-but-Curious Keeper). Let C = {c1, ¢, ..., c0}
be the ciphertexts output by R at the end of the protocol, and C' = {c|,c, ..., c\} where

¢ <= Enc(s, 0) be fresh encryptions of zero under the key s. Let statey: consist of all the random

40

coins used by K rogether with trans. Given the Keeper’s state statex, the key s, the protocol 11 is

e-secure for the Recorder if for any distinguisher D,

[BrC[DstateK,s<C> = 1] [DstateK,s<C) = 1] <e

— Pr
o«

In the case of a malicious Keeper K* who can have arbitrary behavior, we let statex- be
the state of K* at the end of the protocol. Notice that regardless of the possible behaviors
that K* could have, it is constrained to the state that it has stored at the end of the protocol.

It has no additional information besides what it has stored in statejc-.

Definition 3.4.3 (Recorder Security with Malicious Keeper). Let C = {c1,¢s,..., 00} be
the ciphertexts output by R at the end of the protocol, and C' = {c},c,, ..., c\} where d; +
Enc(s, 0) be fresh encryptions of zero under the key s. Given the malicious Keeper’s state statey,

the key s, the protocol 11 is e-secure for the Recorder if for any distinguisher D,
[I:rC[Dstate,C* .S <C> = 1] - CEE” [Dstatelc* .S (C> = 1] <e

3.4.1 SIMPLE ENCRYPT ZERO PROTOCOL

Here we present the Simple Encrypt Zero Protocol, which achieves Keeper Security and
Recorder security against honest-but-curious Keeper. The main idea here is simple: the
Keeper will stream a sequence of ciphertexts which are encryptions of zero, and and Recorder
will obtain fresh encryptions of zero by taking random subset-sums of the ciphertexts re-

ceived.
Construction 3.4.1 (Simple Encrypt Zero Protocol). A Simple Encrypt Zero Protocol in-

41

stance EZ(n, m, \) for the Keeper IKC and the Recorder R proceeds as follows:

* K chooses a random key k € {0,1}”, and R chooses a random secret matrix ¥ €

{O, 1}>\><m.

* K streams encryptions (t;;a; = t; -k +0)t0oR, fori = 1,2, ..., m and random

r, € {0,1}".

* R maintains matrix ¥ € {0,1}*" and column vector & € {0,1}*. Each row of
(Y|Kk) will be a random subset-sum of the encryptions sent by IC, with each subset-sum
chosen according to . W and Kk will be computed on the fly. Specifically, when encryption
(r;,a;) comes in, R will update W to be W + o, - r; and K to be k + 0,a;. Here, 0, is

the i-th column of 3, and r, is interpreted as a row vector.

* At the end of the protocol, IKC outputs its key s = k, and R outputs (¥ |K), whose rows are

the ciphertexts ci, ¢z, . . ., Cx.

Remark 3.4.1. Forthe ease of analysis, we combine all the encryptions sent together, and denote

Iy a
| %) a
R = € {0,1}", anda = € {0,1}. This gives us
r, A
a=R-k

Correspondingly, notice that R is essentially recording 3, ¥ = ¥ -Rand k = ¥ -a =
YR - k=v .k

42

It is easy to verify that the rows of (¥|k) are encryptions of 0 under the key s = k,
as they are simply sums of encryptions of 0 under s and by the additive homomorphism of
Raz’s encryption scheme they also must encrypt 0. Therefore, this construction meets the
correctness requirement for an Encrypt Zero Protocol.

Next, we show that this construction achieves Keeper security and Recorder security

against honest-but-curious Keepers.

Theorem 3.4.1 (Keeper Security of EZ). The Simple Encrypt Zero Protocol is (Cn*, Q(an))-

secure for the Keeper, for some C < % and o dependent on C.

Proof. This follows directly from Lemma 3.3.1. Here viewg essentially contains 7 pairs of
(r;,a;), wherea; = r; - sfori = 1,2,... m and random r, < {0,1}". For adversaries
space-bounded to Cn* memory bits for some C < % and « dependent on C, by apply-
ing Lemma 3.3.1, we get that the probability of an adversary outputting s is no more than

O(27%"). Hence, the average min-entropy of s conditioned on viewg, is Q(an).

]

Theorem 3.4.2 (Recorder Security of EZ). The Simple Encrypt Zero Protocol with parameter

m = 2n and an honest-but-curious Keeper is O(2")-secure for the Recorder.

Proof. Since the Keeper is honest and follows the protocol, R is a random 7 X 7 matrix.
For m = 2n, we have R being a random 27 X 7 matrix, which is full rank with probability
1 — O(27"). Notice that if R is full rank, given that X is a random matrix conditioned on
the Keeper’s state statex and s, ¥ = X - R is also a random matrix conditioned on statex
ands.

In this way, conditioned on statex and s, (¥|k) contains 7andom encryptions of 0.

Therefore, by definition, these encryptions {cy, . . ., ¢y } cannot be distinguished from {¢/, . . .

43

7‘/)\}

where ¢/ is a random encryption of 0. Hence, the probability of distinguishing C from C’ is

bounded by the probability that R is 7ot full rank, which is O(27"). Thus we have

Pt [Diganss(6) = 1] = Pt [Dysans(e) = 1]| <20(27) = 0(27")

o«

as desired.

]

Kindly notice that this simple construction of an Encrypt Zero protocol is only secure
for the Recorder if the Keeper is honest. For malicious Keepers, they could, for example,
generate the matrix R with bad randomness so that it is very likely to be low rank.

One way to tackle this is to have the random matrix R generated and streamed by a trusted
third party, which is a common practice in much of the prior work in the bounded storage
model. However, if we do not wish to rely on a trusted third party (notice that the model
without a trusted third party is stronger than one with a trusted third party), we show in the
following subsection how we can tweak our simple construction to have Recorder security

even against malicious Keepers.

3.4.2 ENHANCED ENCRYPT ZERO PROTOCOL

In the Enhanced Encrypt Zero Protocol construction, we tweak the simple construction

slightly to account for malicious Keepers.

Construction 3.4.2 (Enhanced Encrypt Zero Protocol). An Enbanced Encrypt Zero Protocol

instance EZ" (n, m, \) with the Keeper IKC and the Recorder R proceeds as follows:

44

IC chooses a random key k € {0,1}" and an independent random secret s € {0,1}™.

R chooses a random secret matrix 3 € {0,132,

o K streams random encryptions of the bits in s. Namely, in matrix form, ICsends (R, a =

R -k +5s) for random R € {0,1}"*".

* R maintains matrix W = X - R and column vector k = X - a.

IC sends its key k in the clear, and R uses that to compute p = k — ¥ - k.
o K outputs s as its key, and R outputs (3| @), whose rows are the ciphertexts ¢y, ¢, . . ., C».

Notice that ¢ = k — ¥ -k = X -5, and hence the rows of (X|¢) are indeed encryptions

of 0 using key s, as desired in the correctness property.

Theorem 3.4.3 (Keeper Security of EZT). The Simple Encrypt Zero Protocol is (Cn*, Q(n))-

secure for the Keeper, for some C < % and o dependent on C.

Proof. First, notice that before the Keeper sends over k, the two distributions (s, R, R -k+s)
and (s, R,R - k + §') for random s’ € {0,1}"” are statistically indistinguishable, due to the
RoRC security of Raz’s encryption scheme.

Now, notice that in the second distribution, the probability the Recorder can guess s is
27", In this case, if it later receives k, the probability it guesses s is still at most 2”77, which
is27".

Now, we use the following simple fact: suppose two distributions X, Yare e-close. Then
there is a procedure P which first samples x <— X, and then based which x it samples, it may
replace x with a different sample x’. P satisfies the property that (1) its output distribution is

identical to Y, and (2) the probability it re-samples is €.

45

We use this simple fact by assigning X to (s, R,R - k +) for random s’ € {0,1}” and
Yt (s, R,R -k +s).

Now consider the probability of guessing s. In the case X, we know it is 27", So if we
consider Y sampled from P, we know that the probability of guessing s in the non-replacing
case is 27”. But the replacing case only happens with probability €, meaning overall the prob-

ability of outputting s is at most € - 27",

]

Theorem 3.4.4 (Recorder Security of EZ"). The Enbanced Encrypt Zero Protocol with pa-

rameter m = 2n and any possibly malicious Keeper K* is perfectly secure for the Recorder.

Proof. Notice that regardless of the Keeper’s state statei+ (even if one of a malicious Keeper),
O is always random conditioned on statex- and s, since it is solely sampled by the Recorder.
Therefore, (X|¢) is already random encryptions of 0 conditioned on stateg- and s. Hence,
to distinguish it from other random encryptions of 0, one can do no better than a random
guess. Thus, the advantage that any distinguisher D could have in distinguishing Cand C' is

0 as desired.

3.5 Two-PaARTY KEY-AGREEMENT PROTOCOL

Consider a pair of interactive PPT algorithms II = (A, B). Each of A, B take 7 as input. We
will let (@, b, trans) < II(») denote the result of running the protocol on input . Here, 2
is the output of A, & the output of B, and trans is the transcript of their communication.

A two-party key-agreement protocol is a protocol Il = (A, B) with the correctness prop-

erty that Pr[z = 4] = 1. In this case, we will define k = a4 = band write (£, trans) < I1(z).

46

Additionally, we will require eavesdropping security:

Definition 3.5.1 (Eavesdropping Security of Two-Party Key-Agreement Protocol). We say

that 11is (S(n), €)-secure if for all adversaries A that use at most S(n) memory bits,

| Pr[A(k, trans) = 1 : (k, trans) < I1(z)]

—Pr[A(K trans) = 1: &' < K, (k, trans) < I1(n)]| < e.

In this section we demonstrate how we can use the Simple Encrypt Zero Protocol to
implement a two-party key-agreement protocol. For simplicity, we consider a key space of

one single bit.

Construction 3.5.1 (Two-Party Key-Agreement Protocol). For two parties P and Q try-
ing to derive a shared key ke {0,1}, they will first run a Simple Encrypt Zero Protocol
EZ(n,m,\ = 1) with P as the Keeper and Q as the Recorder. At the end of the EZ proto-
col, P gets a key s, and Q gets an encryption of O using s, namely (¥|K) (notice that K is of
dimension \ X 1, and hence is a single bit bere). To derive a shared key, Q sends ¥ to'P. The

shared key is thus K, which is known to Q, and is computable by P ask = ¥ -,

Remark 3.5.1. For key spaces {0,1}%, we can simply tune the protocol to use \ = d, and that

will yield a shared key k e {0,1}4

Theorem 3.5.1. The two-party key-agreement protocol presented above is (Cn?,

o2~ /2))-secure a gainst eavesdropping adversaries.

Proof. First, by the Keeper security of the EZ protocol, for adversaries with up to Cn?* mem-

ory bits for some C < 55, Hyo(s|viewg) > Q(an). Subsequently, H. (W, s|viewg) >

L
20°

47

Q(an). Let H : {0,1}” x {0,1}* — {0,1} compute the inner product. Using the fact that

the inner product is a universal hash function and applying Lemma 3.2.1, we have
(H(®,s), H viewg) ~¢/> (U, Uy, viewr),

where 1 + 2log(1/¢) = Q(an). Solving for € yields that ¢ = O(279*/2), i.e. an adver-
sary has advantage at most O(27*/2) in distinguishing (¥, s) and U;. Recall that in the
eavesdropping security game for Two-Party Key-Agreement Protocols, the adversary need to
distinguish between actual derived keys k = W - s from random &' sampled directly from the
key space {0,1}. Observe that H(W,s) = ¥ - s = k, and ¥ is drawn from U,. Therefore,

we have

| Pr[A(k, trans) = 1 : (k, trans) < I1(z)]

—Pr[A(K trans) = 1 : & « K, (k, trans) < II(n)]| < e = O(27%"/2)

as desired.

3.6 Brr COMMITMENT SCHEME

Let 7 and A be security parameters. A bit commitment scheme II consists of a tuple of algo-

rithm (Commit, Reveal, Verify) for a committer C and a verifier V.

* The Commit algorithm is run by the committer, and it takes as input the security pa-

rameter 7 and a bit & to be committed to. A transcript of the communication, a com-

48

mitter state, and a verifier state (trans, statec, statey,) <— Commit(z, A, &) is output

by the Commit algorithm.

* The Reveal algorithm is also run by the committer, and it takes as input a commit-
ter state statec and a bit &'. It outputs a revealing, denoted as x, together with the

committed bit &'.

* The Verify algorithm is run by the Verifier and takes input a verifier state statey, and

outputs of a Reveal algorithm, (x, &'). It outputs a bit .

There are two desired security properties for a bit commitment scheme, namely hiding and
binding. We will give out formal definitions below.

The hiding property of a bit commitment scheme essentially states that the committed
bit & should be hidden from the Verifier given the Verifier’s view after the Commit algo-
rithm. Notice that the Verifier’s view after the Commit algorithm consists of exactly trans

and statey. Put formally:

Definition 3.6.1 (Hiding Property of a Bit Commitment Scheme). For some given security
parameters n, \ and a bit b, let (trans, statec, statey) <— Commit(n, \, b), we say that the

bit commitment scheme is (S(n), €)-biding if for all Verifiers V with up to S(n) memory bits,

(b, trans, statey) =, (7, trans, statey,)

for random r uniformly sampled from {0, 1}.

The binding property of a bit commitment scheme essentially requires that a committer

is not able to open a commitment to both 0 and 1. Notice that this applies to all committers,

49

who can be potentially malicious. A malicious committer .4 can run an arbitrary Commit™
procedure, which has no guarantees except that it produces some (trans, state 4, statey).
Note that this Commit™ procedure does not necessarily commit to a bit 4, so it does not take

b as a parameter.

Definition 3.6.2 (Binding Property of a Bit Commitment Scheme). Let A be an adversary.

A plays the following game Binding 4 11 (%, A) for some given security parameters n and \:

s Theadversary Aruns an arbitrary commit procedure (potentially malicions) Commit*(n, \)

with an bonest Verifier V and produces (trans, state 4, statey).
* The adversary produces (xy, 0) and (x1,1).

* The game outputs 1 if both Verify(statey, (xo,0)) and Verify(statey, (x,1)) out-

put 1, and 0 otherwise.

We say that 11 is e-binding if for all adversary A

Pr[Binding 4 ;y(72,A) = 1] < e.

Now we present the construction for a bit commitment scheme using the Enhanced En-

crypt Zero Protocol.

Construction 3.6.1 (Bit Commitment Scheme from Parity Learning). For security parame-
ters n, \ and committer input bit b, we construct the bit commitment scheme by specifying each

of the (Commit, Reveal, Verify) algorithms.

* Commit(n, b): Runs the Enbanced Encrypt Zero Protocol EZ" (n, 2n, \) with C as the

Keeper and V as the Recorder. Set trans to be the transcript of the EZ™ protocol, statee to
74 p P

50

be the output of C after the EZ" protocol, i.e. a secret key's, and statey, to be the output of
V after the EZ" protocol, namely (X|p), which contains multiple encryptions of 0 under
the key s. Additionally, samples random ~ € {0,1}*", and sends (y,c =~ - s+ b) to

the Verifier (notice that this also gets appended to trans).
* Reveal(statec, &'): Outputs (x,0') = (s,).

* Verify(statey,x,'): Checks that ¢ = X - X, and that c = ~ - x + . If any of the

checks fail, output O; otherwise, output 1.

Theorem 3.6.1. The bit commitment construction above is (Cn?, O(27"/%))-hiding for some

C < 1/20.

Proof. First, by the Keeper security of the EZ* protocol, for adversaries with up to Cz* mem-

ory bits forsome C < 55, Hoo(s|viewy,) > Q(n). Recall that viewy, isexactly (trans, state,).

Subsequently, H (7, s|trans, statey,) > Q(n). Let H : {0,1}” x {0,1}" — {0,1} com-
pute the inner product. Using the fact that the inner product is a universal hash function

and applying Lemma 3.2.1, we have
(H(~,s), H, trans, statey) =/, (U1, Uy, trans, statey),
where 1 + 2log(1/€) = (). Furthermore, we have
(H(7y,s) + ¢, H, trans, statey) ~./, (U + ¢, Uy, trans, statey,),

Solving for e yields that € = O(27/2), i.e. an adversary has advantage at most O(27"/2)

in distinguishing H(7y, s) + cand U; + ¢. Notice that H(y,s) + ¢ = - s + ¢ = b, and that

SI

Uy + cis yet another uniformly random bit » <— {0, 1}. Therefore, we have
(b, H, trans, statey) ~/, (r, Uy, trans, statey)
for € = O(27*/?) and r a uniformly random bit. Thus, by
(b, trans, statey) = (7, trans, statey)

fore = 10(277/%) = 0(27"/?) and r a uniformly random bit, we have shown that the bit

commitment scheme presented above is (Cn?, O(27/2))-hiding as desired.

Theorem 3.6.2. The bit commitment scheme presented above is (27*)-binding.

Proof. We show that the scheme is statistically binding by arguing that the probability that
an adversary can win the Binding game is no more than 2%
Notice that in order for the adversary to win the game, the adversary need to output

(x0,0) and (xy,1) that both pass the Verify algorithm. Recall that the Verify Algortihm

checks for two things:

* ¢ =%+ 0andc = 7 - x; + 1 where ¢ and -y are part of the transcipt trans and

are stored in the Verifier’s state statey,. This leads to that v - xg # -y - x; and hence

X0 7£ Xj.

* ¢ =X -x) = X - x where 3 and ¢ are sampled and computed by the Verfier and

stored in statey,. Notice this leads to 3 - (xp — x;) = 0.

52

Now let ' = x¢ — x;. From x(# x;, we know that x’ # 0. Therefore, we need to find a
non-trivial root for the equation ¥ - " = 0. Recall that by the Recorder’s perfect security of
the EZT protocol, the matrix X stored in statey, is random conditioned on the Committer’s
view. For each row of 33, denoted as 3; for the 7-th row, the probability that 3, - ' = 0 is no
more than a random guess, i.e. % Since to pass the Verify algorithm requires 3 - x’ = 0,
ie. ¥,-x = Oforall7 = 1,2,...,), and recall that the rows of X are independent, the

1

probability that the adversary can find such a x’ is no more than (3)* = k.

3.7 OBLIVIOUS TRANSFER PROTOCOL

In an oblivious transfer (OT) protocol, one party, the Sender S, has two input bits xy, x1, and
the other party, known as the Receiver R’ (not to be confused with the Recorder R in the
Encrypt Zero Protocols), has an input bit 4. After some communication between the two
parties, R’ outputs x;. The OT protocol requires two security properties, namely Sender
security and Receiver security. Sender security dictates that R’ should have no information
about x;_;, and Receiver security requires that S has no information about 4.

Before we proceed to our construction of an OT protocol, we first formally define these
two security properties.

The security of the Sender ensures that an adversarial Receiver can learn about at most
one of %y and x;. In other words, there always exists a 4’ s.t. the Receiver has no information

about x. Put formally:

Definition 3.7.1 (Sender Security). An OT protocol is said to be e-secure for the Sender if there

53

exists some b' s.t. for any arbitrary distinguisher D and Receiver’s view viewr/,
‘Pr[DvieWR/ (xb’) - 1] - Pr[DviewR/ (V) = 1” S €

for a uniformly random bit r.

The security of the Receiver requires that the sender S has no information about 4. In
other words, given the view of the Sender, one should not be able to distinguish between &

and a random bit 7. Put formally:

Definition 3.7.2 (Receiver Security). Let views denote the view of the sender, the OT protocol
11 Zs said to be (S(n), €)-secure for the Receiver if for all possible Senders that use up to S(n)
memory bits,

(b, views) =, (r,views),
where r is a uniformly random bit.

Now we give out our construction of the OT protocol.

The key idea is that the Receiver will send a commitment of its bit & to the Sender. And
the Sender therefore uses the additive homomorphism of Raz’s encryption scheme to com-
pute the encryptions of (1—54)xo and bx;. The Sender further re-randomizes these two cipher-
texts by adding fresh encryptions of zero before sending them to the Receiver. The Receiver

decrypts these two ciphertexts and obtains 0 and x; as desired.

Construction 3.7.1 (Oblivious Transfer Protocol from Parity Learning). For given security

parameter n, a Sender S and a receiver R':

54

* Run an Enbanced Encrypt Zero Protocol EZ* (n, 2n, A\ = 2) with R’ as the Keeper and
S as the Recorder. At the end of the protocol, R' has as output a secret key s, and S has
output (X|@), which consists of two encryptions of 0 under the key s. Additionally, R'
samples random ~y € {0,1}*", and sends (7y,c = = - s+ b) to the Sender. Kindly notice

that in this step the Receiver R' is actually just executing Commit(n, b).

o ForSender S, let oo, 01 be the first and second row of X, and ¢o, ¢1 be the two elements
in ¢. Notice that ¢y = o - sand ¢; = o - s. The Sender then sends to the Receiver

two ciphertexts:

oo+ %07y, P+ x(1—c)=(00+x7y) s+ ((1 — b)xo)

o1+ XY, ¢+ xic = (o1 +x17) - s+ (bx1).

* R’ decrypts both ciphertexts that it bas received using the key s, and learns (1 — b)xy and

bxy. Notice that one of these two values will be x;, as desired and gets output by R’

We then proceed to prove desired security properties for the above construction of the

OT protocol.
Theorem 3.7.x. The OT protocol described above is perfectly secure for the Sender.

Proof. We show that rightafter the first part of the protocol where R’ executes Commit(z, b),
there is a fixed ¥’ = ¢ + - - s + 1 such that the Receiver will have no information about x; .
Notice that this does not break Receiver security, since although &' is fixed, S has no way to

compute &' as s is only known to the Receiver R'.

55

Ifl = c+~-s+1 =0, weshow that the Receiver has no information about xy, i.e. xo
is random given the Receiver’s view. Notice that we have 1 — ¢ = 4 - s. And hence the two

ciphertext that the Receiver receives are

oo + %07, o +x0(1—€) = (0'0 +x0'7)-s

0'1+X1’)’, ¢1+X1€ :(0'1+x1’y)-s+x1.

The only source that the Receiver might be able to gather information about x; is from the
first ciphertext. However, since o is uniformly random given the Receiver’s view, oy +
%07 is also uniformly random given the Receiver’s view, i.e., it does not give any additional
information to the Receiver. The Receiver also gets no information from (g + x7y) - s,
as this value can be easily simulated by the Receiver since it knows both oy + xy7 and s.
Therefore, x is random given the Receiver’s view.

IfY = ¢+ -s+1 =1, by asimilar argument, we have that x; is random given the
Receiver’s view. Bringing these parts together, we have shown that for &' = ¢+ -s+1,xy

is random conditioned on the Receiver’s view, i.e.
!Pr[D\,ieWR, (x5) = 1] — Pr[Dyiewy, () = 1]’ =0.

Thus, the OT protocol above is perfectly secure for the Sender as desired.

O

Theorem 3.7.2. The OT protocol described above is (Cn?*, O(27"/2))-secure for the Receiver,

for some C < %.

56

Proof. The proof for this is extremely straightforward. As observed above, the receiver R’ is
exactly executing Commit(z, b), i.e. it is committing the bit & to the Sender, who is playing
the role of the Verifier in the commitment scheme. Hence, by the (Cr?, O(27"/?))-hiding
property of the commitment scheme, we have that for all possible Sender S that uses at most
Cn? memory bits,

(b, trans, states) = (7, trans, stategs)

fore = O(27"/?)) and a uniformly random bit . Notice that view s is actually just (trans, states).

Therefore, the above equation can be rewritten as
(b,views) = (7, views).

This is the exact definition for (Cn?, €)-Receiver-security. Therefore, the OT protocol above

is (Cn?, O(27"/2))-secure for the Receiver as desired.

57

Disappearing Cryptography in the
Bounded Storage Model

58

4.1 INTRODUCTION

The bounded storage model " leverages bounds on the adversary’s storage ability to enable
secure applications. A typical bounded storage model scheme will involve transmitting more
information than what the adversary can possibly store. One approach is then to use some
small piece of the transmission to perform, say, a one-time pad or other tasks. Since the ad-
versary cannot record the entire transmission, they most likely will not be able to recover
the small piece that is used, preventing attacks. Other approaches, say those based on taking
parities """, are also possible. In any case, the honest users’ space requirements are always
much less than the adversary’s storage bound; usually, if the honest parties have space N, the
adversary is assumed to have space up to roughly O(NN?).

The bounded storage model has mostly been used to give protocols with information-
theoretic, unconditional, and everlasting security; in contrast, the usual time-bounded ad-
versary model generally requires making computational assumptions.

A critical feature of the bounded storage model is that the large transmission cannot be
entirely stored by the adversary. This large transmission is then subsequently used in such
a way that whatever space-limited information the adversary managed to record about the
transmission will become useless. In this way, the large transmission is ephemeral, effectively
disappearing immediately after it is sent.

Most work in the bounded storage model uses this disappearing communication as a
tool to achieve information-theoretic security for primitives such as key agreement, com-
mitments, or oblivious transfer, for which computational assumptions are necessary in the

standard model. However, apart from insisting on statistical security, the security goals are

59

typically the same as standard-model schemes.
The goal of this chapter, in contrast, is to use such “disappearing” communication to
realize never-before-possible security goals, especially those that are zmpossible in the standard

model.

4.1.1 MOTIVATING EXAMPLES

ExAMPLE 1: DENIABLE ENCRYPTION. Deniable encryption” concerns the following sce-
nario: Alice has the secret key sk for a public key encryption scheme. At some point, Bob
sends a ciphertext ct encrypting message 7 to Alice. Charlie observes the ciphertext ct.

Later, Charlie obtains the ability to force that Alice reveals sk (say, through a warrant),
so that he can decrypt ct and learn the message 7. Alice wants to maintain the privacy of the
message 7z in this scenario, so she reveals a fake decryption key sk’, such that decrypting ct
with sk’ will result in a fake message 7'. This version of deniable encryption is called recezver
deniable encryption.

Unfortunately, as shown in Bendlin ez a/. °, such receiver deniable encryption is impossi-
ble for “normal” encryption where the ciphertext is just a single (concise) transmission from
Bob to Alice”. Prior works*"** therefore consider a more general notion of encryption that
involves back-and-forth communication between the parties.

In this chapter, we consider a different solution: what if the ciphertext is so large that
it cannot be recorded by Charlie? Alice also cannot store the ciphertext in its entirety, but
she will be able to decrypt it live using her secret key. Charlie, who does not know the secret

key, will be unable to decrypt during the transmission. Then we may hope that, even if Alice

“The deniable encryption literature often refers to such a scheme as having two-messages, as they consider
the transmission of the public key from Alice to Bob as the first message.

6o

subsequently reveals the z7ue secret key sk, that Charlie will not be able to learn the message 7
since he no longer has access to ct. Such a scheme would immediately be deniable: Alice can
claim that ct encrypted any arbitrary message 7', and Charlie would have no way to verify
whether or not she was telling the truth. Relative to the solution in prior work, such a scheme
would then require only one-way communication, but at the expense of greatly increased
communication in order to ensure that Charlie cannot record all of ct. Such a scheme might

make sense in a setting where Bob is unable to receive incoming communication.

ExAMPLE 2: SECOND-HAND SECRET KEYS. Consider an encrypted broadcast service where
a user may buy a decoder box which decrypts broadcasts. The content distributor wants
to enforce that for each decoder box, only one individual at a time can decrypt broadcasts.
Specifically, the content distributor is concerned about the following attack: Alice has a de-
coder box, and uses it to decrypt a broadcast live at broadcast time. Then, post broadcast, she
gives the box to Bob. Bob has previously stored the encrypted broadcast, and then feeds it
into the decoder box to receive the broadcast. The result is that two individuals are able to
use one box to decrypt the broadcast.

Our solution, again, is to imagine the ciphertexts being so long that they cannot be stored.

As such, Alice’s decoder box will be completely useless to Bob after the broadcast occurs.

EXAMPLE 3: NON-INTERACTIVE SECURITY AGAINST REPLAY ATTACKS. Consider a
scenario where instructions are being broadcast from a command center to a number of re-
cipients. Suppose that the recipients are embedded devices with limited capabilities; in par-
ticular, they cannot keep long-term state. We are concerned that an attacker may try to issue

malicious instructions to the recipients.

61

The natural solution is to authenticate the instructions, say by signing them. However,
this still opens up the possibility of a replay attack, where the adversary eavesdrops on some
signed instruction, and then later on sends the same instruction a second time, causing some
adverse behavior.

In the classical model with stateless recipients, the only way to prevent replay attacks
is with an interactive protocol, since a stateless recipient cannot distinguish the command
center’s original message and signature from the adversary’s replay. In a broadcast scenario,
interacting with each recipient may be impractical. Moreover, interaction requires the re-
cipients themselves to send messages, which may be infeasible, especially if the recipients are
low-power embedded devices.

As before, our idea is to have the signatures on the instructions be so large that the adver-
sary cannot record them in their entirety. The recipients can nonetheless validate the signa-
tures, but an adversary will be unable to ever generate a valid signature, even after witnessing
many authenticated instructions from the command center. The result is non-interactive

security against replay attacks.

EXAMPLE 4: SOFTWARE SUBSCRIPTION. The traditional software model involves the soft-
ware company sending the software to users, who then run the software for themselves. Software-
as-a-Service, instead, has the software company centrally host the software, which the users
run remotely. The centralized model allows for subscription-based software services—where
the user can only have access to the program by making recurring payments—that are impos-
sible in the traditional software model.

On the other hand, software-as-a-service requires the user to send their inputs to the soft-

ware company. While many technologies exist to protect the user data, this model inherently

62

requires interaction with the users.

We instead imagine the company sends its software to the users, but the transmissions
are so large that the users cannot record the entire program. Nevertheless, the users have the
ability to run the program entirely locally during the transmission, and do not have to send
any information to the software company. Then, once the transmission ends, the user will

be unable to further run the program.

EXAMPLE 5: OVERCOMING IMPOSSIBILITY RESULTS FOR OBFUSCATION. Program ob-
fuscation is a form of intellectual property protection whereby a program is transformed so
that (1) all implementation details are hidden, but (2) the program can still be run by the
recipient.

Virtual Black Box (VBB) obfuscation, as defined by Barak e al.”, is the ideal form of ob-
fuscation: it informally says that having the obfuscated code is “no better than” having black
box access to the functionality. Unfortunately, Barak ez 4/.show that such VBB obfuscation
is impossible. The counter-example works by essentially running the program on its own
description, something that is not possible just given oracle access. As a consequence, other
weaker notions have been used, including indistinguishability obfuscation (iO) and diftering
inputs obfuscation”, as well as virtual grey box obfuscation (VGBO) . These notions have
proven tremendously useful for cryptographic applications, where special-purpose programs
are designed to be compatible with the notion of obfuscation used. However, for securing
intellectual property inside general programs, these weaker notions offer only limited guar-
antees.

Our model for transmitting programs above may appear to give hope for circumventing

this impossibility. Namely, if the obfuscated program is so large that it cannot be recorded in

63

its entirety, then maybe it also becomes impossible to run the program on its own description.

4.1.2 OURRESULTS

In this chapter, we explore the setting of disappearing cryptography, giving both negative and

positives results.

ONLINE OBFUSCATION. First, we propose a concrete notion of online obfuscation, which
is streamed to the recipient. We then explore what kinds of security guarantees we can hope
for, motivated by Examples 4 and 5 above.

First, we demonstrate that VBB obfuscation is still impossible in most settings, assuming
the hardness of the Learning With Errors (LWE) problem. The proof closely follows the
Barak ez al.proof in the case of circuits, but shows that it can be adapted to work on online
obfuscation. Thus we show that Example s is not possible.

This still leaves open the hope that online obfuscation can yield something interesting
that is not possible classically. We next define a useful notion of online obfuscation, mo-
tivated by the goal of classically-impossible tasks. Towards that end, we note that differing
inputs obfuscation is known to be a problematic definition " in the standard model. We also
observe that indistinguishability obfuscation offers no advantages in the streaming setting
over the classical setting. We therefore settle on a notion of virtual grey box (VGB) obfus-
cation for online obfuscation. We formulate a definition of VGB obfuscation which allows
the recipient to evaluate the program while it is being transmitted, but then lose access to the
program after the transmission completes.

We give two candidate constructions of VGB online obfuscation, based on differentideas.

We leave as an open question constructing a provably secure scheme.

64

APPLICATIONS OF ONLINE OBFUSCATION. Next we turn to applications, establishing
VGB online obfuscation as a central tool in the study of disappearing cryptography, and pro-
viding techniques for its use. We show how to use VGB online obfuscation to realize each of
the Examples 1-3.

Specifically, assuming VGB online obfuscation (and other comparatively mild computa-

tional assumptions), we define and construct the following:

* Public key encryption with disappearing ciphertext security in the bounded storage
model. Here, ciphertexts are streamed to the recipient, and message secrecy holds
against adversaries with bounded storage®, even if the adversary later learns the secret

key. This immediately solves Examples 1 and 2.

¢ We generalize to functional encryption with disappearing ciphertext security, which
combines the disappearing security notion above with the expressive functionality of
functional encryption. This allows, for example, to combine the advantages of dis-
appearing ciphertext security with traditional functional encryption security goals of

fine-grained access control.

* Digital signatures with disappearing signature security, where signatures are streamed,
and the recipient loses the ability to verify signatures after the stream is complete. This

solves Example 3.

In the following, we expand and explain our results in more detail.

"We also require the usual polynomial #Zme constraint of the adversary.

65

4.1.3 DEFINING OBFUSCATION IN THE BOUNDED STORAGE MODEL

We first study obfuscation in the bounded storage model. We specifically imagine that obfus-
cated programs are too large to store, but can be streamed and run in low space while receiving

the stream.

NEGATIVE RESULT FOR VBB OBFUsCATION. OQur first result is that, virtual black box
(VBB) security remains impossible, even for this model. Recall that VBB security requires
that anything which can be efficiently learned from the obfuscated code can be efficiently
learned given just oracle access to the function. We follow the Barak ez 2/.” impossibility, but
take care to show that it still works for online obfuscation.

The Barak ez al.impossibility works roughly as follows. Let (Enc, Dec) be a fully homo-
morphic encryption scheme. Choose random values «, 3,y as well as keys sk, pk for Enc,

and consider the following program:

¢

pk, Enc(pk,) ifx=0

15} ifx=a«a

Px) =
~y if Dec(sk,x) = 3
1 otherwise

\

An attacker with black box access to this program can learn pk and an encryption of . But
to learn anything about f3, they need to query on «; by the security of Enc, this is impossible.
Thus, the attacker cannot learn anything about 7.

On the other hand, an attacker with (perhaps obfuscated) code for P can homomorphi-

66

cally apply P to Enc(pk, a) to get Enc(pk,). Then they can feed Enc(pk, /3) into the pro-
gram to learn .

For online obfuscation, we show that this works, provided the attacker has access to three
sequential streams of the program. In the first stream the attacker evaluates on o to learn
pk, Enc(pk, «). In the second stream, it uses its evaluation procedure and the program stream
to homomorphically evaluate P on Enc(pk, a), learning Enc(pk, /3). Finally, in the third
stream it runs P on Enc(pk,) to learn 7.

The only challenging partis the second stream. Here, we use the evaluation procedure for
the online obfuscation. Specifically, the evaluation procedure maintains a state, which is up-
dated as each bit of the stream comes in. We run the evaluation algorithm homomorphically
on the input Enc(pk, «), by maintaining an encrypted state, which we update homomorphi-
cally.

We then explain how to remove the final stream using Compute-and-Compare obfusca-
tion’ """, a technique used toward a similar goal in Ananth and La Placa®. The first stream
can also be removed in an auxiliary input setting, which is needed for most interesting ap-
plications. Thus, in the auxiliary input setting we obtain an impossibility even for a single

stream. The full proof'is given in Section 4.3.

DEFINING ONLINE OBFUSCATION. Above, we only considered the standard notions of
security, but for online obfuscation. We now seek to formulate a definition which captures
the goal of having the obfuscated program “disappear” after the stream is complete. Con-
cretely, we want that, after the stream is complete, it is impossible to evaluate the program on
any “new” inputs.

Our formalization of this is roughly as follows: we imagine the attacker gets the program

67

stream, and then later learns some additional information. We ask that any such attacker
can be simulated by an oracle algorithm. This algorithm makes queries to the program, and
then receives the same additional information the original adversary received. Importantly,
after the additional information comes in, the simulator can no longer query the program
any more.

Some care is needed with the definition. VBB security, which requires the simulator to
be computationally bounded, is impossible for the reasons discussed above. Indistinguisha-
bility obfuscation (iO) allows for a computationally unbounded simulator and thus avoids
the impossibility”. While iO is useful in the standard model, we observe that there is little
added utility to considering iO in the online model. Indeed, an unbounded simulator can
query the entire function on all inputs during the query phase, and thus has no need to make
additional queries after receiving the additional information.

We therefore settle on a virtual grey box (VGB) notion of security *, where the simu-
lator is computationally unbounded, but can only make a polynomial number of queries.
The computationally unbounded simulator then receives the additional information, but
can make no more queries. Our full definition is in Section 4.2.

We note that it may be possible to also consider a version of differing inputs obfuscation
(diO) in our setting, but there is evidence that diO may be impossible **. So we therefore stick

to VGB obfuscation.

*Concretely, it can break Enc to learn a.

68

4.1.4 APPLICATIONS

Before giving our candidate constructions of VGB online obfuscation, we discuss applica-

tions.

D1sAPPEARING CIPHERTEXT SECURITY. We first demonstrate how to use online obfus-
cation to construct public key encryption where ciphertexts effectively disappear after being
transmitted. Concretely, we define a version of public key encryption where the attacker
gets to learn the secret key after the ciphertext is transmitted. We require that the attacker
nevertheless fails to learn anything about the message.

Our first attempt is the following, which essentially uses an online obfuscator as a witness
encryption scheme’°: the public key pk is set, say, to be the output of a one-way function f
on the secret key sk. To encrypt a message 7 to pk, generate an online obfuscation of the
program P(sk’) which outputs if and only if f{sk’) = pk. Decryption just evaluates the
program on the secret key.

For security, we note that, by the one-wayness of £, an attacker who just knows pk and
sees the ciphertext cannot evaluate the ciphertext program on any input that will reveal 7.
Hence, m presumably remains hidden. Moreover, even if the attacker learns sk after seeing
the ciphertext, it should not help the attacker learn 2, since the attacker no longer has access
to the program stream.

Formalizing this intuition, however, leads to difficulties. Suppose we have an adversary
A for the encryption scheme. We would like to use A to reach a contradiction. To do so, we
invoke the security of the online obfuscator to arrive at a simulator S that can only query the

ciphertext program, but does not have access to the program stream. Unfortunately, this sim-

69

ulator is computationally unbounded, meaning it can invert £ to recover sk at the beginning
of the experiment, and then query the program on sk.

Our solution is to replace f with a lossy function’, which is a function with two modes:
an injective mode (where fis injective) and a lossy mode (where the image of £is small). The
security requirement is that the two modes are indistinguishable.

We start with f'being in the injective mode. In the proof, we first switch the ciphertext
program to output 7 if and only if sk’ = sk; by the injectivity of f this change does not
affect the functionality of the program. Hence, the simulator cannot detect the change (even
though it can invert fand learn sk for itself), meaning the adversary cannot detect the change
either.

In the next step, we switch f to being lossy, which cannot be detected by a computa-
tionally bounded attacker. We next change the ciphertext program again, this time to never
output 7. This only affects the program’s behavior on a single point sk. But notice that for
lossy £, sk is statistically hidden from the attacker, who only knows pk when the ciphertext is
being streamed. This means the simulator, despite being computationally unbounded, will
be unable to query on sk, meaning the simulator cannot detect the change. This holds true
even though the simulator later learns sk, since at this point it can no longer query the cipher-
text program. Since indistinguishability holds relative to the simulator, it also holds for the

original attacker. The full construction and proof are given in Section 4.4.

EXTENSION TO FUNCTIONAL ENCRYPTION. We can also extend disappearing ciphertext
security to functional encryption. Functional encryption allows users to obtain secret keys
for functions g, which allow them to learn g(2) from ciphertext encrypting 7. The usual

requirement for functional encryption is that an attacker, who has secret keys for functions g;

70

such that g;(mo) = g;(m;) for all 7, cannot distinguish encryptions of 72 from encryptions
of m.

In Section 4.6, we consider a similar notion, but where the requirement that g;(20) =
gi(m1) only holds for secret keys in possession when the ciphertext is communicated. Even
if the attacker later obtains a secret key for a function g such that g(m) # g(m;), indistin-
guishability will still hold. Analogous to the case of plain public key encryption, this cap-
tures the intuition that the ciphertext disappears, becoming unavailable once the transmis-
sion ends.

We show how to combine standard-model functional encryption with online VGB ob-
fuscation to obtain functional encryption with such disappearing ciphertext security. The
basic idea is as follows. To encrypt a message 7, first compute an encryption ¢ of 7 under
the standard-model functional encryption scheme. Then compute an online obfuscation of
the program which takes as input the secret key sk, for a function g, and decrypts c using sk,,
the result being g(m2).

This construction seems like it should work, but getting the proof to go through using
computationally unbounded simulators is again non-trivial. We show how to modify the

sketch above to get security to go through.

DI1SAPPEARING SIGNATURES. We next turn to constructing disappearing signatures, sig-
natures that are large streams that can be verified online, but then the signature disappears
after the transmission ends. We formalize this notion by modifying the usual chosen mes-
sage security game to require that the attacker (who does not know the signing key) cannot
produce a signature on 47y message, even messages that it previously saw signatures for.

We show how to construct such signatures in Section 4.5, using online obfuscation. An

71

additional building block we need is a prefix puncturable signature. This is a signature scheme
where, given the signing key sk, itis possible to produce a “punctured” signing key sk, which
can sign any message of the form (x, 72) such thatx # x*. We require that, even given sk,-, no
message of the form (x*,) can be signed. Such prefix puncturable signatures can be built
from standard tools

We construct a signature scheme with disappearing signatures by setting the signature on
a message 7 to be an online obfuscation of the following program P. P has sk hardcoded,
and on input x outputs a signature on (x, 7). To verify, simply run the streamed program
on a random prefix to obtain a signature, and then verify the obtained signature.

We then prove that an attacker cannot produce a valid signature stream on any message,
even messages for which it already received signature streams. For simplicity, consider the
case where the attacker gets to see a signature on a single message 7. Let x* be the prefix that
the verifier will use to test the adversary’s forgery. Note that x* is information-theoretically
hidden to the adversary at the time it produces its forgery. We will switch to having the sig-
nature program for 7 that rejects the prefix x*. Since the program no longer needs to sign
the prefix x*, it can use the punctured key sk, to sign instead. The only point where the
program output changes is on x*. The simulator will be unable to query on x* (since it is
information-theoretically hidden), meaning the simulator, and hence the original adversary,
cannot detect this change.

Now we rely on the security of the puncturable signature to conclude that the adversary’s
forgery program cannot output a signature on any message of the form (x*,), since the
entire view of the attacker is simulated with the punctured key sk,+. But such a signature is

exactly what the verifier expects to see; hence the verifier will reject the adversary’s program.

72

4.1.5 CONSTRUCTING ONLINE OBFUSCATION

We finally turn to giving two candidate constructions of online obfuscation. We unfortu-
nately do not know how to prove the security of either construction, which we leave as an
interesting open problem. However, we discuss why the constructions are presumably resis-

tant to attacks.

CONSTRUCTION 1: LARGE MATRIX BRANCHING PROGRAMS. Our first construction is
based on standard-model obfuscation techniques, starting from Garg ez al.*’. As in Garg
et al.*”, we first convert an NC' circuit into a matrix branching program using Barrington’s
theorem '*. In Garg ez al. ", the program is then “re-randomized” following Kilian"* by left
and right multiplying the various branching program components with random matrices,
such that the randomization cancels out when evaluating the program. We instead first pad
the matrices to be very large, namely so large that honest users can record a single column, but
the adversary cannot write down the entire matrix. We then re-randomize the large padded
matrix.

We show that, if the matrix components are streamed in the correct order, honest users
can evaluate the program in low space. However, since the program is too large to write
down, malicious users will presumably be unable to evaluate the program once the stream
concludes.

We note thatin the standard model, re-randomizing the branching programis not enough
to guarantee security. Indeed, linear algebra attacks on the program matrices are possible, as
well as “mixed-input” attacks where multiple reads of the same input bit are set to differ-

ent values. Garg et al.*” and follow-up works block these attacks by placing the branching

73

program matrices “in the exponent” of a cryptographic multilinear map.

In our setting, the large matrices presumably prevent linear algebra attacks. Moreover,
we show how to block mixed-input attacks by choosing the matrix padding to have a special
structure. While we are unable to prove the security of our multilinear-map-less scheme, we
conjecture thatit nevertheless remains secure. The resultisa plausible VGB online obfuscator

for NC! circuits. Details are given in Section 4.7.

CONSTRUCTION 2: TIME-STAMPING. Oursecond construction is based on time-stamping
in the bounded storage model. Here, a large stream is sent. Anyone listening can use the
stream to compute a time-stamp on any message. However, once the stream concludes, it
will be impossible to time-tamp a “new” message. The concrete security notion guarantees a
fixed (polynomial-sized) upper bound on the total number of stamped messages any adver-
sary can produce.

Our construction uses time-stamping, together with standard-model obfuscation. To
obfuscate a program P, first send the random stream. Then, compute a standard-model ob-
fuscation of the program P, which takes as input x and a time-stamp for x, verifies the time-
stamp, and then runs Pif the stamp is valid.

Assuming the standard model obfuscation is has VGB security, this construction should
be an online obfuscation with VGB security. The intuition is to start with a VGB simulator
for the standard-model scheme. This simulator is allowed to make queries at any time after
the obfuscation of 7’ is generated, even after receiving the additional information. However,
the only useful queries to P are on inputs with valid time-stamps. The intuition is that, by
the security of the time-stamping scheme, it should be information-theoretically possible to

determine all the time-stamped messages that the adversary could possibly produce once the

74

stream concludes. The simulator will determine the possible queries, and make each of them
while it has access to the program. All future queries by the simulator will then be rejected.
Unfortunately, we do not know how to actually rigorously prove that this construction
works. The difficulty is justifying that we can actually anticipate all valid time-stamps that
may be produced. We therefore leave formalizing the above intuition as an interesting open

question.

4.1.6 RELATED WORK

Time-stamping in the bounded storage model ", as discussed above, is perhaps the first ap-
plication of the bounded storage model beyond achieving information-theoretic security.
We note, however, that non-interactive time-stamping was recently achieved in the standard
model using appropriate computational assumptions

Dziembowski* consider a notion of forward-secure storage, which is very similar to our
notion of disappearing ciphertext security for encryption. A key difference is that their work
only considers the secret key case, and it is unclear how to adapt their constructions to the
public key setting.

Our notion of disappearing ciphertext security can be seen as achieving a notion of for-
ward security, where a key revealed does not affect the security of prior sessions. Forward
security has been studied in numerous standard-model contexts (e.g.**). However, standard-
model constructions of forward security (non-interactive) encryption such as*’ always in-

volve updating the secret keys. Our construction does not require the secret key to be up-

dated.

75

4.2 DEFINING OBFUSCATION IN THE BOUNDED STORAGE MODEL

In this section we will formally define online obfuscation (¢()) and its corresponding security
notions, but before we start, we will first introduce an idea called a streams.

A stream s, is a sequence of bits sent from one party to another. Generally, we require
that the length of the stream, denoted as |ss.|, to be greater than the memory bound of the
users and adversaries. This means that a properly constructed stream can #ot be stored in its
entirety. However, algorithms or programs can still take a stream as an input. This means that
the algorithm or program would operate in an online manner - it actively listens to the stream
as the bits come in, and performs the computation simultaneously. We denote a variable as a

stream by putting a ”>>” in the subscript.

Definition 4.2.1 (Online Obfuscator). Let \, n be security parameters. An online obfuscator
00 for a circuit dlass {C\} consists of a pair of uniform PPT machines (Obf, Eval) that satisfy

the following conditions:

* Obf takes as input a circuit C € Cy, uses up to O(n) memory bits, and produces a stream

S>> < Obf(C)

* Evaltakesasinput a stream ss, and an input x, uses up to O(n) memory bits, and outputs

y + Eval(ss, x).

* Forall C € Cy, for all inputs x, we have that

Pr[C(x) =y : 55 < Obf(C), y < Eval(ss,x)] = 1.

76

To define security for an online obfuscator 0O = (Obf, Eval), consider the following

two experiments:

I. EXpA,ch,oO(C & C)\, /e)
* The experiment consists of an arbitrary number of rounds. At each round, one
of the following two scenarios happens:

— Atan interaction round, the adversary A interacts arbitrarily with the chal-

lenger ch.

— Atastream round, the adversary A receives a fresh stream” of the obfuscated
circuitss, <— Obf(C). The challenger ch will receive a special tag notifying

it that a streaming has happened.

* The challenger ch may choose to terminate the experiment at any time by out-

putting a bit b € {0,1}, and & will be the output of the program.
* Whenever the number of stream rounds is greater than &, the challenger ch im-
mediately outputs 0 and terminates the experiment.

2. EXpS,ch,aO(C € Cy k. q):

* The experiment consists of an arbitrary number of rounds:

— Atan interaction round, the simulator S interacts arbitrarily with the chal-

lenger ch.

"Notice that a fresh stream is sampled every time, so that no single stream is sent repeatedly.

77

— Atastream round, the simulator S may send up to g adaptive oracle queries
to the circuit Cand receive corresponding responses. The challenger ch will

receive a special tag notifying it that a streaming has happened.

* The challenger ch may choose to terminate the experiment at any time by out-

puttingabit & € {0,1}, and & will be the output of the program.

* Whenever the number of stream rounds is greater than &, the challenger ch im-

mediately outputs 0 and terminates the experiment.

Definition 4.2.2 (k-time Virtual Grey-Box (VGB) Security). Let A, n be security parameters.
Let k be a fixed positive integer. For an online obfuscator 0O to satisfy k-time Virtual Grey-Box
security, we require that there exists a memory bound S(n), such that for any challenger ch, and
any adversary A that uses up to S(n) memory bits, there exists a computationally unbounded

simulator S s.t. for all circuits C € Cy:

| Pr[EXpA,ch,oO(C7 /e) = 1] - Pr[EXpS,ch,oO(C> kﬂ) - 1” S negl()\),

where g = poly(\).

The definitions for Indistinguishability Obfuscation (iO) security and Virtual Black-Box
(VBB) security are obtained analogously by applying minor changes to the VGB security

definition.

Remark 4.2.1 (k-time iO Security). We modify Definition 4.2.2 to allow g = superpoly(\)

to obtain the definition for k-time iO Security.

78

Remark 4.2.2 (k-time VBB Security). We modify Definition 4.2.2 to restrict S to be a PPT
simulator to obtain the definition for k-time VBB Security. We show in Section 4.3 that online

obfuscators with VBB security do not exist.

Remark 4.2.3 (1-time VBB/VGB/iO Security). Under the special case where k = 1, we obtain

the definitions for 1-time VBB/VGB/iO security correspondingly.

Remark 4.2.4 (Unbounded VBB/VGB/iO Security). Underthe special case wherek = superpoly (),

we obtain the definitions for unbounded VBB/VGB/iO security correspondingly.

4.3 IMPOSSIBILITY OF VBB ONLINE OBFUSCATION

In this section, we show that online obfuscation with VBB security does not exist in the
Bounded Storage Model if fully homomorphic encryptions and obfuscation of multi-bit
compute-and-compare programs exist. Note that both of these primitives can be built from

the assumption that the Learning With Errors (LWE) problem is hard.

4.3.1 FuLLy HoMoMoORPHIC ENCRYPTION

A Fully Homomorphic Encryption (FHE) scheme is a public key encryption scheme with

an additional Eval procedure that allows arbitrary computations on the ciphertexts.

Definition 4.3.1 (Fully Homomorphic Encryption). Let A be the security parameter. A
[fully homomorphic encryption scheme for circuit cdlass {C\} is a tuple of PPT algorithms 11 =
(Gen, Enc, Eval, Dec) with the following syntax.

* Gen(1*) — (pk, sk) takes as input the security parameter \, and outputs a public key

pk and a secret key sk.

79

* Enc(pk,m) — ct takes as input the public key pk and a message m € {0,1}*, and

outputs a ciphertext ct.

* Eval(C,ct) — ct’ takes as input a circuit C € Cy and a ciphertext ct, and outputs an

evaluated ciphertext ct'.

* Dec(sk,ct) — m takes as input a private key sk and a ciphertext ct, and outputs a

decrypted message m.

In addition to the usual PKE correctness and security requirements (which don’t involve

Eval at all), we require correctness of homomorphic evaluations.

Definition 4.3.2 (Correctness of Homomorphic Evaluations). A fully homomorphic encryp-
tion scheme 11 = (Gen, Enc, Eval, Dec) is correct for homomorphic evaluations if for all mes-

sages m and circuits C € Cy,

(pk, sk) « Gen(1*)

ct < Enc(pk, m)
Pr |y = C(m) : >1—negl(A).
ct’ « Eval(C, ct)

y < Dec(sk, ct’)

Gentry, Sahai and Waters * have shown how to construct such an FHE scheme assuming

the hardness of the LWE problem.

4.3.2 OBFUSCATION OF COMPUTE-AND-COMPARE PROGRAMS

The idea of compute-and-compare programs was first raised by Wichs and Zirdelis”” in 2017.

Around the same time, the work of Goyal, Koppula and Waters " essentially shows the same

8o

result which they named “lockable obfuscation”, with some slight differences in presentation

and focus. Here, we will use the notion of multi-bit compute-and-compare programs from

Wichs and Zirdelis

Definition 4.3.3 (Muld-Bit Compute-and-Compare Program). Given a
Sfunction f: {0,1}5 — {0, 1}, 4 target value y € {0,1}, and a message z € {0,1}',

a multi-bit compute-and-compare program P is defined as follows:

z ifflx) =y

1 otherwise

Py (x)=

Wichs and Zirdelis”” have shown that obfuscation of multi-bit compute-and-compare

programs exists, assuming the hardness of the LWE problem.

Lemma 4.3.x (7). If the LWE problem is hard, then there exists an obfuscator (Obf, Eval)

for multi-bit compute-and-compare programs such that:

o For any multi-bit compute-and-compare program P and input x,

Pr[P(x) = w: P < Obf(P), w < Eval(P,x)] = 1.

o For any multi-bit compute-and-compare program P with size parameters Cy,, Ly, and

U if the target value y for P is chosen uniformly at random, then there exists a (non-

uniform) PPT simulator S, such that

Obf(P) é S(Eina gouta ém.fg)'

81

4.3.3 PRrROOF OF VBB IMPOSSIBILITY

Theorem 4.3.x. If fully homomorphic encryptions and obfuscation of multi-bit

compute-and-compare programs exist, then online obfuscators with VBB security do not exist.

Proof. Let FHE = (Gen, Enc, Dec, Eval) beasecure FHE scheme. First, we run FHE.Gen(1*)
to obtain (pk, sk), and sample uniformly at random v, 3,y € {0,1}*. Let Q be a multi-bit
compute-and-compare program where fis the FHE decryption function FHE.Dec with the

secret key sk hardcoded in, and y = 3 and z = . Notice that we have:

~v if FHE.Decy(x) = 8
Qs (x) = .
1 otherwise

Let Q be the obfuscated version of Q and define the program P as follows:

(

FHE.Ency (@), Q ifx =0
Pogx) =141 ifx = a

1 otherwise

\
We assume that there exists an online obfuscator 0O with 2-time VBB security, and con-

sider the following adversary A for the experiment Exp 4 o, ,0 (P, & = 2):

* In the first stream round, A receives a stream s, <— 00.Obf(P) and then computes

00.Eval(ss., 0), obtaining FHE.Encpi () and Q"

"If there is an interaction round before the first stream round, during which the challenger sends
FHE.Encpk () and Q to A as auxiliary input, then we can build a similar A for the experiment with £ = 1,
breaking the 1-time VBB security with auxiliary input.

82

* In the second stream round, A receives another stream 5%, <— 00.0bf(P). A homo-

morphically evaluates P on ciphertext FHE.Enc (o) by computing

FHE.Eval (0O.Eval(sy,, -), FHE.Encp(cr)) = FHE.Eval (P, FHE.Ency ()
= FHE.Ency (P(a))

= FHE.Enc.(8).

* In the next interaction round, A runs the program Q on input FHE.Enc,(/5) to ob-

tain 7. Then A sends 7y to the challenger.

VBB security of the online obfuscator requires that there exists a computationally bounded
simulator S for the experiment Expg o ,0 (P, k = 2,4 = poly(A)). Given the security of
the FHE scheme and that S is only allowed ¢ = poly(\) number of oracle queries to the
program P, with overwhelming probability S can obtain only FHE.Ency () and Q in the
stream rounds. Notice that FHE.Encpy (o) does not depend on 7y at all, and for the compu-
tationally bounded S, by lemma 4.3.1, Q is indistinguishable from a simulator that has no
knowledge of 7. Hence, the probability that S can send to the challenger is negligible, as
opposed to A, who always sends 7y successfully. Therefore, a challenger can easily distinguish
between the two experiments, thus breaking the 2-time VBB security of the online obfusca-

tor.

83

4.4 PusLic KEY ENCRYPTION WITH DISAPPEARING CIPHERTEXT SECURITY

4.4.1 DEFINITION

We will start by defining a security notion for public key encryption that we name Disappear-
ing Ciphertext Security.

Essentially, it captures the security game where the adversary is given the private key after
all of its queries but before it outputs a guess for the bit 4. In traditional models, this defini-
tion does not make much sense, as the adversary can simply store the query responses, and
then later use the received private key to decrypt. However, in the bounded storage model,
the adversary cannot possibly store the ciphertexts, so even if the adversary is handed the pri-
vate key afterwards, it cannot possibly use it to decrypt anything.

Put formally, for security parameters A and 7, a public key encryption scheme in the
bounded storage model is a tuple of PPT algorithms IT = (Gen, Enc, Dec) that each uses up
to O(n) memory bits. The syntax is identical to that of a classical PKE, except that now the

ciphertexts are streams cts,. For the security definition, consider the following experiment:

Disappearing Ciphertext Security Experiment DistEli’Sﬁ:t (A, n):

Run Gen(1*,1") to obtain keys (pk, sk).

Sample a uniform bit & € {0, 1}.

The adversary A is given the public key pk.

The adversary A submits two messages 729 and 72, and receives Enc(pk, 72;), which

is a stream.

84

* The adversary A is given the private key sk.

* The adversary A outputs a guess &' for b. If &' = b, we say that the adversary succeeds

and the output of the experiment is 1. Otherwise, the experiment outputs 0.
Using this experiment, we are now able to formally define disappearing ciphertext secu-
rity.
Definition 4.4.1 (Disappearing Ciphertext Security). Let X, n be security parameters. A pub-
lic key encryption scheme 11 = (Gen, Enc, Dec) has disappearing ciphertext security under
memory bound S(n) if for all PPT adversaries A that use at most S(n) memory bits:

Pr [Dist] (A, 2) = 1] < = + negl(\).

| =

Now we will show how to use online obfuscation to construct a public key encryption
scheme with disappearing ciphertext security. One important tool that we will take advantage

of is lossy functions, which we will introduce in the following.

4.4.2 Lossy FUNCTION

Lossy functions are a subset of Lossy Trapdoor Functions due to Peikert and Waters®’ that

do not require the existence of a trapdoor for the injective mode. To put formally:

Definition 4.4.2 (Lossy Function). Lez \ be the security parameter. For {(\) = poly(\) and
k(X) < U(N) (k is referred to as the “lossiness”) , a collection of (¢, k)-lossy functions is given by
a tuple of PPT algorithms (S, F) with the following properties. As short-hands, we have Sy,(-)
denote S(+,1) and Sy, (+) denote S(-, 0).

8s

* Easy to sample an injective function: S,,; outputs a function index s, and F{s, -) com-

putes an injective (deterministic) function f,(-) over the domain {0, 1}*.

* Easy to sample a lossy function: S, outputs a function index s, and Fs, -) computes a

deterministic) function f,(-) over the domain {0, 1} whose image has size at most 2'*.
g

* Hard to distinguish injective mode from lossy mode: Let X be the distribution of s
sampled from Sy, and let Y, be the distribution of s sampled from Sy, the two distri-

butions should be computationally indistinguishable, i.e. {X,} ~ {1}

4.4.3 CONSTRUCTION

Here we present our construction of a PKE scheme with disappearing ciphertext security,

using online obfuscation and lossy function as building blocks.

Construction 4.4.1. Let A, n be the security parameters. Let LF = (S, F) be a collection of
(¢, k)-lossy functions, and 0O = (Obf, Eval) an online obfuscator with 1-time VGB security

under S(n) memory bound. The construction I1 = (Gen, Enc, Dec) works as follows:

* Gen(1*,1%): Sample an injective function index f, from Sy, and a uniform sk <

{0,1}*. Computey = F(s,sk) = f.(sk), and set pk = (s,y). Output (pk, sk).

* Enc(pk, m): Construct the program P ,,,, as follows:

miffi(x) =y
Pfj%m(x) = .
1 otherwise

86

Obfuscate the above program to obtain a stream cts, <— Obf(Pr). The ciphertext is

simply the stream Cts,.

* Dec(sk, cts.): Simply evaluate the streamed obfuscation using sk as input. An bonest

execution yields Eval(cts,, sk) = Py, ,,(sk) = m as desired.

4.4.4 PROOF OF SECURITY

Now we show thatif LF is a collection of (¢, £)-lossy functions with a lossiness £ = poly(\),
and 00O is an online obfuscator with 1-time VGB security under S(%) memory bound, then
the above construction has disappearing ciphertext security under S() memory bound.

We organize our proof into a sequence of hybrids. In the very first hybrid, the adversary
plays the disappearing ciphertext security game Distaij%t (A,) where bis fixed to be 0. Then
we gradually modify the hybrids to reach the case where & = 1. We show that all pairs of
adjacent hybrids are indistinguishable from each other, and therefore by a hybrid argument

the adversary cannot distinguish between &4 = 0 and & = 1. This then directly shows disap-

pearing ciphertext security.

SEQUENCE oF HYBRIDS

* Hy: Theadversary plays the original disappearing ciphertext security game Distaij%t (A, n)

where b = 0, i.e. it always receives Enc(pk, 7).

* H: The same as Hy, except that in Enc(pk, 72;,), we replace Pr) om, With P, such

sk,mh

87

that
my ifx = sk
Kk,mb <x> -
1 otherwise

So now instead of checking the secret key by checking its image in the injective func-

tion, the program now directly checks for sk.

* H,: Thesameas H,, except thatinstead of sampling £; from S, we now use £ sampled

from Sjossy-
* Hj: The same as H,, except that now we set & = 1 instead of 0.
* Hj: Switch back to using injective £; instead of the lossy £

* Hs: Switch back to using the original program 7y, ,, instead of 2, .

ProoF oF HYBRID ARGUMENTS

Lemma 4.4.1. Ifthe online obfuscator oO has1-time VGB security under memory bound S(n),
then no (potentially computationally unbounded) adversary that uses up to S(n) memory bits

can distinguish between Hy and H, with non-negligible probability.

Proof. This step actually only relies on indistinguishability obfuscation security of the ob-
fuscator 0O, which is implied by its online VGB security. Notice that the only difference
between Hy and H, is the program P, ,,, and P, being obfuscated. Now notice that if £;
is injective, and that y = f/(sk), then f;(x) = yis equivalent to x = sk. Hence, P, and
P

sk,mh

P,

sk,my,

have the exact same functionality, i.e. on the same input x, their outputs P, ,,, (x) and

(x) are always the same. Then by the VGB (or even iO) security under memory bound

88

S(n), no adversary under memory bound S(7) should not be able to distinguish between the

obfuscations of these two programs with non-negligible probability.

]

Lemma 4.4.2. If LF is a collection of ({, k)-lossy functions, then no PPT adversary can distin-

guish between Hy and H, with non-negligible probability.

Proof. This step is quite straightforward. Notice that the only difference between A, and A,
is that an injective f; is sampled in A, while a lossy f; is sampled in H,. Therefore, the only
way an adversary can distinguish between), and H, is by directly distinguishing f; from fy,
which contradicts with the security of the lossy function thatitis hard to distinguish injective
mode from lossy mode.

Put formally, we show how one can use an adversary A that distinguishes H; from A, to
construct an adversary A’ that distinguishes between the injective mode and the lossy mode
of the lossy function.

A’ receives a distribution X of function indices s sampled from either S, or Sjoe, and
it needs to tell which mode the distribution is sampled from. A’ would run Gen(1*,1"),
except that now sample s directly from the distribution X. Then A’ simulates the rest of the
disappearing ciphertext security game for A by playing the role of the challenger with fixed
b = 0. At the end of the game, A should be able to tell if it is in H, or H,. If A says it is in
Hi, A’ claims that X is sampled from S, and if A says it is in /5, A’ claims that Xis sampled
from Sjossy-

Notice that if Xis sampled from Sjyj, then the view of A is identical to the one in A, and
if X'is sampled from Sy, the view of A is identical to the one in /. Therefore, if A succeeds

in distinguishing A, from H,, A’ succeeds in distinguishing between the injective mode and

89

the lossy mode.

]

Lemma 4.4.3. Ifthe online obfuscator 0O has 1-time VGB security under memory bound S(n),
and the lossiness k of LF is poly (), then no (potentially computationally unbounded) adversary

under memory bound S(n) can distinguish between H, and Hs with non-negligible probability.

Proof. First, we show that if the lossiness # = poly(\), the secret key sk is information theo-
retically hidden from the adversary before it is sent. Recall that y = F(s/, sk) = f;/(sk) where
f» is alossy function. For f, the size of the domain is 2!, while the size of the range is only
26 This implies that for an image y of a random input, the number of possible pre-images

k2 Now if the lossiness £ is poly()), the

is at least 2%/2, except with probability at most 2~
number of possible pre-images is exponential, except with negligible probability. Given that
the only constraint on sk is uniformly random conditioned on being a pre-image of y, it is
information theoretically unpredictable from the adversary.

Now since sk is information theoretically hidden, the program P’ is essentially a point
function on a random point. And the only difference between H, and Hjs is the output of
the point function. If an adversary is able to distinguish between /), and /3, this means that
the adversary is able to distinguish the output of an obfuscated point function without even
knowing the point. This directly presents an adversary A for the 1-time VGB security game.
In experiment Exp 4 , ,0, the adversary A is always able to obtain the output of an obfus-
cated point function. However, in game Expg ., ,00, the simulator § is only allowed to make
g = poly(\) number of oracle queries to the point function. The probability that the sim-

ularor is able to obtain the output is only 4/2%/% = poly())/2P°Y™) = negl(\). Therefore,

the challenger can easily tell if it is interacting with the adversary A or the simulator S, which

90

contradicts with the 1-time VGB security of the online obfuscator.

]

Lemma 4.4.4. If LF is a collection of ({, k)-lossy functions, then no PPT adversary can distin-

guish between Hy and H, with non-negligible probability.
The proof of this lemma follows analogously from the one of Lemma 4.4.2.

Lemma 4.4.5. Ifthe online obfuscator oO has1-time VGB security under memory bound S(n),
then no (potentially computationally unbounded) adversary that uses up to S(n) memory bits

can distinguish between Hy and Hs with non-negligible probability.
The proof of this lemma follows analogously from the one of Lemma 4.4.1.

Theorem 4.4.1. If LF is a collection of ({, k)-lossy functions with lossiness k = poly(\), and
0O is an online obfuscation with 1-time VGB security under S(n) memory bound, then Con-

struction 4.4.1 bas disappearing ciphertext security under S(n) memory bound.

Proof. The lemmas above show a sequence of a polynomial number of hybrid experiments
where no PPT adversary with S(7) memory bound can distinguish one from the next with
non-negligible probability. Notice that the first hybrid Hj corresponds to the disappearing
ciphertext security game where 4 = 0, and the last hybrid Hs corresponds to one where

b = 1. The security of the indistinguishability game follows.

91

4.5 DISAPPEARING SIGNATURE SCHEME

4.5.1 DEFINITION

In this section, we define a public-key signature scheme in the bounded storage model which
we call Disappearing Signatures. The idea is that we make the signatures be streams such that
one can only verify them on the fly, and cannot possibly store them. The security game re-
quirement is also different. Traditionally, for an adversary to win the signature forgery game,
the adversary would need to produce a signature on a fresh new message. However, in the
disappearing signature scheme, the adversary can win even by producing a signature on a mes-
sage that it has previously queried. The catch here is that even though the message might have
been queried by the adversary before, the adversary has no way to store the valid signature on
the message due to its sheer size.

Put formally, for security parameters A and #, a disappearing signature scheme consists
of a tuple of PPT algorithms IT = (Gen, Sig, Ver) that each uses up to O(z) memory bits.
The syntax is identical to that of a classical public key signature scheme, except that now the

signatures are streams 0s,. For the security definition, consider the following experiment:
Signature Forgery Experiment SigForge 4 ;(A, 7):
* Run Gen(1*,1") to obtain keys (pk, sk).
* The adversary A is given the public key pk.

* For g = poly(\) rounds, the adversary A submits a message 7, and receives o,

Sig(sk, 7), which is a stream.

92

* The adversary A outputs 7’ and streams a signature os,. The output of the experi-

ment is Ver(pk, m', 0%,).

Notice that traditionally, we would require 72 to be distinct from the messages 7’s queried
before, but here we have no such requirement. With this experiment in mind, we now define

the security requirement for a disappearing signature scheme.

Definition 4.5.1. Let X\, n be security parameters. A disappearing signature scheme 11 =
(Gen, Sig, Ver) is secure under memory bound S(n), if for all PPT adversaries A that use up
to S(n) memory bits,

Pr [SigForge 4 1j(A, 7) = 1] < negl()).

To construct such a disappearing signature scheme, one tool that we will use alongside

online obfuscation is a prefix puncturable signature.

4.5.2 PREFIX PUNCTURABLE SIGNATURE

A prefix puncturable signature is similar to a regular public key signature scheme that works
for messages of the form (zx, 72), where x is called the prefix. Additionally, it has a puncturing
procedure Punc that takes as input the secret key sk and a prefix x*, and outputs a punctured
secret key sk,«. sk, allows one to sign any message of the form (x, 7) with x # x*. The
security requirement is that, given sk.«, one cannot produce a signature on any message of
the form (x*, m).

To put formally, in addition to the usual correctness and security requirements of a sig-
nature scheme, we also have a correctness requirement and a security requirement for the

punctured key.

93

Definition 4.5.2 (Correctness of the Punctured Key). Let A be the security parameter. We

require that for all m € {0,1}* and x,x* € {0,1}* s.t. x # x*:

(pk, sk) < Gen(1*)
<« Sig(sk, (x,
Prlo=0¢": 7 Ig((x m)) =1.

sk < Punc(sk, x*)
)

o' < Sig(sky, (x,m))

Definition 4.5.3 (Security of the Punctured Key). Let X be the security parameter. We re-

quire that for all x* € {0,1}* and m € {0,1}*, for all PPT adversaries A, we have

(pk, sk) « Gen(1%)
Pr | Ver(pk, (x",m),0) =1: sk, < Punc(sk, x*) < negl()).

o+ A(sk, pk, (x*,m))

Bellare and Fuchsbauer ** have shown that such a signature scheme can be built from any
one-way function.
4.5.3 CONSTRUCTION

We now present our construction of the disappearing signature scheme.

Construction 4.5.1. Let A\, n be the security parameters. Let PPS = (Gen, Sig, Ver, Punc)
be a prefix puncturable signature scheme, and 0O = (Obf, Eval) be an online obfuscator with

1-time VGB security under S(n) memory bound. The construction I1 = (Gen, Sig, Ver) works
as follows:

94

« Gen(1*,1%): Run (pk,sk) <— PPS.Gen(1*), and output (pk, sk).

* Sig(sk, m): Construct the program P as follows:

Py .,(x) = PPS.Sig(sk, (x, m)).

Obfuscate the above program to obtain a stream o, <— Obf(P). The signature is simply

the stream 0.

* Ver(pk,m,0s.): Sample a random prefix x* € {0,1}*, and evaluate the streamed

obfuscated program using x* as input. This yields

0" = Eval(os,x") = PPS.Sig(sk, (x*, m)).

Then, output PPS.Ver(pk, (x*, m), 0*) as the result.

The correctness of the construction comes directly from the correctness of the underlying

prefix puncturable signature scheme.

4.5.4 PROOF OF SECURITY

Theorem 4.5.1. If PPS is a correct and secure prefix puncturable signature scheme, and 0O
is an online obfuscator with 1-time VGB security under S(n) memory bound, then Construc-

tion 4.5.1 is secure under S(n) memory bound.

Proof. We prove the security of Construction 4.5.1 through a sequence of hybrids.
Recall what happens in the signature forgery game H,. At the end of the game, the ad-

versary A outputs a message 72 and a signature o, . We verify it by sampling a random x* €

95

{0,1}*, obtaino* = Eval(o’,,x*) = PPS.Sig(sk, (x*, m')), and then output PPS.Ver(pk,
(", m'),).

Now imagine that in /;, we sample x* € {0, 1}* at the very beginning of the game. We
also obtain a punctured key sk,+ <— PPS.Punc(sk, x*), which we don’t use yet. /; should be
indistinguishable from H for any adversary, since x* and sk~ are never sent to the adversary.

Then we move to H,, where we modify the way the signature is generated in response
to the adversary’s /ast query. Now instead of sending the obfuscation of the program P, we

send the obfuscation of the following program P’:

PPS.Sig(sky«, (x,m)) ifx # x*
]);kx* ,X* <x> = :

1 otherwise

Notice that this program rejects the input x*, but produces a valid signature on all other
inputs. The only point where Pand P differ is on input x*.

Note that before the obfuscation of P’ is streamed back to the adversary, x* is informa-
tion theoretically hidden. Therefore, to distinguish between H; and A, the adversary needs
to distinguish between two obfuscated programs which differ on a single input that is infor-
mation theoretically hidden. By the same argument as in Lemma 4.4.2, this would break the
1-time VGB security of the underlying online obfuscator. Therefore, no adversary with up
to S(7) memory bits can distinguish between H; and H, with non-negligible probability.

Now we repeat the process to modify our response to the adversary’s second-to-last query
and obtain /3, all the way until we reach H,,,, where now all the signatures streamed to the
adversary use I instead of P. Since here we have a sequence of a polynomial number of

hybrids that no adversary with a.S(%) memory bound can distinguish one from the next with

96

non-negligible probability, no adversary with a S(%) memory bound can distinguish /.,
from H,. Notice that in H,, the adversary plays the original security game. However, in
H,1, all the responses to the queries use P instead of .

Now notice that the entire game /1, can be simulated using only the punctured secret
key sky-. If an adversary is able to win this game, then we can use this adversary to obtain a
signature on (x*, 7) for some m, even if we only have sk,-. This directly contradicts with the
security of the underlying prefix puncturable signature scheme. Therefore, no PPT adversary

A with S(z) memory bound can win any of Hy, H,, ..., H,

;1. Since Hj is the original

signature forgery experiment, we conclude that Construction 4.5.1 is secure.

4.6 FUNCTIONAL ENCRYPTION

4.6.1 DEFINITION

First we recall the adaptive security definition for functional encryption, which utilizes the

following experiment:

Functional Encryption Security Experiment Distffn()\):
* Run Setup(1*) to obtain keys (mpk, msk) and sample a uniform bit 4 € {0,1}.
* The adversary A is given the master public key mpk.

* For a polynomial number of rounds, the adversary submits a circuit C € {C,}, and

receives skc <— KeyGen(msk, C).

97

* The adversary A submits the challenge query consisting of 2 messages 72 and m;
s.t. C(my) = C(my) for any circuit C that has been queried before, and receives

Enc(mpk, m,).

* For a polynomial number of rounds, the adversary submits a circuit C € {Cy} s.t.

C(my) = C(my), and receives sk < KeyGen(msk, C).

* The adversary A outputs a guess &' for b. If &' = b, we say that the adversary succeeds

and the output of the experiment is 1. Otherwise, the experiment outputs 0.
Definition 4.6.1 (Adaptive Security). A functional encryption schemell = (Setup, KeyGen,

Enc, Dec) s said to be secure if for all PPT adversaries A :

Pr [Disti%H(A) =1] < = + negl(N).

N =

Now we discuss how we define functional encryption in the bounded storage model. As
we have seen in the PKE with disappearing ciphertext security construction, the core idea
here is similar: we now produce ciphertexts that are streams.

Concretely, for security parameters A and 7, afunctional encryption scheme in the bounded
storage model consists of a tuple of PPT algorithms II = (Setup, KeyGen, Enc, Dec) that
each uses up to O(z) memory bits. The rest of the syntax is identical to that of the classical
FE scheme, except that now the ciphertexts cts, are streams. The correctness requirement
remains unchanged apart from the syntax change, but the security definition would need to
be supplemented with a memory bound for the adversary and a slightly different security ex-

periment Dist';"?hB M, DistffﬁB M is identical (apart from syntax changes) to DistEEH except

98

that for function key queries submitted after the challenge query, we no longer require that

C(my) = C(my).

Definition 4.6.2 (Adaptive Security in the Bounded Storage Model). A functional encryp-
tion scheme I1 = (Setup, KeyGen, Enc, Dec) s said to be secure under memory bound S(n)

if for all PPT adversaries A that use at most S(n) memory bits:

Pr [Disti%f[BSM(A, n) =1] < = + negl(\).

N | =

With these definitions in mind, we now present how one can construct a secure func-
tional encryption scheme in the bounded storage model using online obfuscation. The con-
struction will also be based on three classical cryptographic primitives: a Non-Interactive
Zero Knowledge (NIZK) proof system, a secure classical functional encryption scheme, and

a Pseudo-Random Function (PRF).

4.6.2 CONSTRUCTION

Construction 4.6.1. Let A\, n be the security parameters. Let NIZK = (P, V) be a non-
interactive zero knowledge proof system, FE = (Setup, KeyGen, Enc, Dec) a functional en-
cryption scheme, PRF @ {0,1}* x {0,1}* — {0,1}* a psendorandom function for w =
poly (), and 0O = (Obf, Eval) an online obfuscator with 1-time VGB security under memory
bound S(n). We construct the functional encryption scheme I1 = (Setup, KeyGen, Enc, Dec)
as follows:

* Setup(1*,1*): Sample (mpk, msk) < FE.Setup(1*). Sample the common reference

string crs for the NIZK system. Output (mpk, crs) as the overall public key. Outpur msk

99

as the master secret key.

* KeyGen(msk, C): Sample random x, y € {0,1}*. Consider the following function:

C(m) ifk= LorPRF(k, (C,y)) #x
FC7x7},(7’}’Z,/€) = .

1 otherwise

Compute skr <— FE.KeyGen(msk, F¢.,). Also, produce a NIZK proof T that sk is

correctly generated, i.e. the tuple (mpk, C, x, y, skr) is in the langnage

(mpk, msk) <+ FE.Setup(1*)
Empk,C,x%skF = (mpk7 C) xa_yu SkF)
sk <— FE.KeyGen(msk, F,,,)

Output the function key as skc = (C, x, y, skg,).
* Enc((mpk, crs), m): Compute c <— FE.Enc(mpk, (m, L)). Then consider the follow-

ing program that takes as input a function key skc = (C, x, y, skg,):

FE.Dec(skr,c) #fNIZK.V(crs, (mpk, C, x, y,skp), m) =1
Pc,mpk,crs<SkC) - .

1 otherwise

Obfuscate the above program to obtain a stream cts, <— Obf(P). The ciphertext is sim-

ply the stream cts,.

* Dec(ske, cts.) : Simply ontput Eval(cts,, ske).

I00

It should be easy to verify that an honest execution yields
P, mpk,crs(C, %, 9, kg, m) = FE.Dec(skp, ¢) = Fexy(m, L) = C(m)
as desired.

4.6.3 PROOF OF SECURITY

We prove the security of Construction 4.6.1 via a sequence of hybrid experiments.

SEQUENCE OoF HYBRIDS

* Hy: The adversary plays the functional encryption game DistifhB SM(X,) where b =

0, i.e. it always receives Enc(mpk, 72).

* H;: The same as Hy, except that when answering the challenge query by the adver-
sary, we sample a random key £ € {0,1}”. Notice that we don’t change anything
in the response to the challenge query yet. For any function key query that happens
after the challenge query, instead of sampling x € {0,1}* randomly, we set x =

PRF(, (C,y)), where C'is the circuit being queried on by the adversary.

* H,: The same as H,, except that when answering the challenge query, we compute

¢ < FE.Enc(mpk, (m;,, k)) instead of ¢ < FE.Enc(mpk, (2, L)).

* Hj: The same as H>, except that now the crs and the proof 7 of the NIZK system are

generated by the NIZK simulator.

* Hj: The same as Hj, except that now we set & = 1 instead of 0.

I0I

* Hs: Switch back to the original method of generating crs and the proof 7 for the NIZK

system.
* Hy: Switch back to use cinstead of ¢'.

* Hy: Switch back to sampling random x for the function key queries that happen after

the challenge query.

ProoOF oF HYBRID ARGUMENTS

Lemma 4.6.1. If PRF is a secure pseudorandom function, then no PPT adversary can distin-

guish between Hy and Hy with non-negligible probability.

Proof. Notice that only difference between Hj and A, is thatinstead of sampling a random x,
xis computed as PRF (%, (C, y)) where £ is unknown to the adversary. The indistinguishabil-
ity between H, and H; comes directly from the pseudorandomness of the underlying PRF.

Concretely, we show how on can use an adversary A that distinguishes H, from A to
construct an adversary A’ that distinguishes the underlying PRF from a truly random func-
tion. When A’ is given a function fin question, A" would simulate for A the functional
encryption security game Disti'?ﬁs M with & = 0. The only difference is that once after
A has sent the challenge query, in the following function key queries, A" would sample a
random y, and compute the x’s as x = f{C, y). Notice that in the case where f'is a PRF,
we would have x = PRF(k, (C, y)), whereas if fis a truly random function, we would end
up having a uniformly random x. Notice that these two cases exactly corresponds to / and

0, respectively. etermines that it is in H,, outputs that the function fis a tru
Hy, respectively. If A d that it is in Ho, A’ outputs that the funct truly

random function. Otherwise, A’ claims that the function fis a pseudorandom function. If

I02

A succeeds with a non-negligible probability, A’ succeeds with non-negligible probability as

well.

]

Lemma 4.6.2. Ifthe NIZK system is statistically sound, PRF is a secure pseudorandom function
against non-uniform attackers, and the online obfuscator 0O has 1-time VGB security under
memory bound S(n), then no PPT adversary with memory bound S(n) can distinguish between

H, and H, with non-negligible probability.

Proof. The difference between H,; and H, is that we now use ¢’ instead of c. However, notice
that ¢ and ¢’ are never used directly, but only hardcoded into the program P. Therefore, the
only way that an adversary can distinguish between H; and H, is by distinguishing the two
obfuscated programs. Let P be the program obfuscated in Hj that has ¢ hardcoded and 7
be the program obfuscated in A, with ¢ hardcoded. Let us consider how P and 7’ differ in
functionality.

Notice that NIZK.V(crs, (mpk, C, x, y, skg), m) does not depend on ¢ or ¢/, so Pand P
will always fall into the same branch. Without loss of generality, here we consider the non-
trivial branch, where the NIZK proof verifies correctly and the program outputs FE.Dec(skg, ¢).
Since the NIZK proof checks out and that the NIZK system has statistical soundness, we have
thatskrisacorrectly generated function key. Therefore, the program Poutputs FE.Dec(skr, ¢) =
F¢ y(m, L), and the program P outputs Fc. . ,(m, k). Notice that F¢,(m, L) always yields
C(m), and that F¢,(m, k) yields C(m) unless PRF(k, (C,y)) = «. In other words, P and
P’ always have the same output except for on inputs where PRF(, (C, y)) = «.

Now recall that as the obfuscated program is being streamed, £ has just been freshly sam-

pled and not used anywhere else. Therefore, £ is information theoretically hidden from the

103

adversary. Since PRF is a pseudorandom function against non-uniform attackers, the value
of PRF (%, (C, y)) should also be information theoretically hidden from the adversary. Now
that we have P and P differing only on inputs that are information theoretically hidden, by
a similar argument as in Lemma 4.4.2, by the 1-time VGB security of the online obfuscator,
any PPT adversary under memory bound S(7) should not be able to distinguish between the
obfuscations of P and P with non-negligible probability. Consequently, no PPT adversary
with memory bound S(7) can distinguish between /; and A, with non-negligible probabil-
ity.

O
Lemma 4.6.3. If'the NIZK system is zero-knowledge, then no PPT adversary can distinguish

between H, and Hs with non-negligible probability.
This lemma follows directly from the definition of zero-knowledgeness for NIZK.

Lemma 4.6.4. If the underlying functional encryption scheme FE is secure, then no PPT ad-

versary can distinguish between Hs and H; with non-negligible probability.

Proof. The only difference between H3 and H, is that a different value of ¢ is computed. In
Hj, ¢ < FE.Enc(mpk, (my, k)), while in Hy, ¢ +— FE.Enc(mpk, (m, k)). We show that
if an adversary A can distinguish between H3 and Hj, then there is an adversary A’ for the

Distig 11 game that uses A as a subroutine:

* When A’ receives the public key mpk from the challenger, use the NIZK simulator to

sample the crs, and send (mpk, crs) to A.

* Whenever A submits a function key query for circuit Cbefore the challenge query, A’

samples random x, y, and sends Fc, to the challenger. In response, A’ receives skp.

104

A’ then runs the NIZK simulator to produce the proof 7. A’ sends (C, x, y, skr,)
back to A.

* When A submits a challenge query with 72y and m;, A’ samples £ and sends (2, &)
and (4, k) as its own challenge query to the challenger. When A’ receives the cipher-

text ¢, A’ constructs P, mpk crs and sends the obfuscation of Pback to A.

* For function key queries received after the challenge query, follow the same procedure

as above, except that now use x = PRF (%, (C, y)).
* If A says that it is in 3, output 0. Otherwise, output 1.

We verify that the D iStElE,H game that A’ plays is valid: (1) For all the function key queries
F that are sent before the challenge query, either F.,(mo,k) = C(mo) = C(my) =
Fey(my, k), or Fe oy (mo, k) = Fey(my, k) = L. (2) For all function key queries Fthat are
sent after the challenge query, Fe .., (m0, k) = Fe,(my, k) = L.

Notice that A" simulates the exact game for A where it needs to distinguish between
Hj and Hj. So if A succeeds with non-negligible probability, A’ also succeeds with non-
negligible probability, which contradicts with the security of the underlying FE scheme.

Thus, by the security of the underlying FE scheme, no PPT adversary can distinguish
between A3 and H, with non-negligible probability.

O

Lemma 4.6.5. Ifthe NIZK system is zero-knowledge, then no PPT adversary can distinguish

between Hy and Hs with non-negligible probability.
This lemma follows directly from the definition of zero-knowledgeness for NIZK.

10§

Lemma 4.6.6. Ifthe NIZK system is statistically sound, PRF is a secure psendorandom function
against non-uniform attackers, and the online obfuscator 0O has 1-time VGB security under
memory bound S(n), then no PPT adversary with memory bound S(n) can distinguish between

Hs and Hg with non-negligible probability.
The proof of this lemma follows analogously from the one of lemma 4.6.2.

Lemma 4.6.7. If PRF is a secure psendorandom function, then no PPT adversary can distin-

guish between Hq and H, with non-negligible probability.
The proof of this lemma follows analogously from the one of lemma 4.6.1.

Theorem 4.6.1. If NIZK is zero-knowledge and statistically sound, PRF is a secure psendo-
random function against non-uniform attackers, FE is a secure functional encryption scheme,
and the online obfuscator 0O has 1-time VGB security under S(n) memory bound, then Con-

struction 4.6.1 is secure under S(n) memory bound.

Proof. The lemmas above show a sequence of a polynomial number of hybrid experiments
where no PPT adversary with () memory bound can distinguish one from the next with
non-negligible probability. Notice that the first hybrid H| corresponds to the functional en-
cryption security game where & = 0, and the last hybrid /£ corresponds to one where b = 1.

The security of the construction follows.

106

4.7 CANDIDATE CONSTRUCTION I

4.7.1 MATRIX BRANCHING PROGRAMS

A matrix branching program BP of length b, width w, and input length ¢ consists of an input
selection functioninp : [b] — [¢], 2h matrices {M,, € {0,1}**“},cp6e(0,13» 2 leftbookend
thatisarow matrixs € {0, 1}'**, and aright bookend thatisa column matrixt € {0, 1}**!.
BP is evaluated on input x € {0, 1} by computing BP(x) = s (Hie 0 Mz}xinp(,-)> t.

We say that a family of matrix branching programs are snput-oblivious if all programs in

the family share the same parameters b, w, ¢, and the input selection function inp.

Lemma 4.7.1 (Barrington’s Theorem). For a circuit C of depth d where each gate takes at

most 2 inputs, we can construct a corresponding matrix branching program BP with width 5

and h = 4%,

4.7.2 THE Basic FRAMEWORK

Here we present the basic framework of an online obfuscator based on matrix branching
programs. Our framework will be parameterized by a randomized procedure Convert, which
takes as input alog-depth circuit C'and width w, and produces a branching program of length
h = poly(X) and width w. w will be chosen so that the honest parties only need O(w) space
to evaluate the program as it is streamed, while security is maintained even if the adversary
has up to Cuw? space, for some small constant C.

Since the branching program BP will be too large for a space bounded obfuscator to write
down, we will assume that there is a local, space-efficient way to compute each entry of the

branching program, given the circuit C and the random coins of Convert.

107

Note that Barrington’s theorem implies, for log-depth circuits, that » = poly(A) and
that w can be taken as small as 5. Convert can be thought of as some procedure to expand the
width to match the desired space requirements, and also enforce other security properties, as

discussed in Section 4.7.3, where we discuss our particular instantiation of the framework.

Our basic framework actually consists of three schemes. As we will demonstrate, the
three schemes have equivalent security, under the assumed existence of a pseudorandom
function. The first scheme is much simpler, highlights the main idea of our construction,
and allows us to more easily explore security. The downside of the first scheme is that the
obfuscator requires significant space, namely more than the adversary. We therefore present
two additional schemes with equivalent security, where the final scheme allows the obfusca-

tor to run in space O(w), while having equivalent security to the original scheme.

CONSTRUCTION WITH KiLIAN RANDOMIZATION.

We start with the first and simpler scheme, denoted Ok;, that uses randomization due to
Kilian"* to construct a matrix branching program BP’ as follows.

Sample random invertible matrices R, € {0,1}*** for7 = 0,1,...,h. Compute
M, = R, 'M,,R, for/ € [h]and b € {0,1}. Additionally, compute new bookends
s =s-Ryp,andt' = R;l - t. The new randomized matrix branching program is now
BP' = (inp, {M, }iepbefony, 8, t'). Notice that when we compute BP’(x), these ran-
dom matrices will cancel each other out and hence the output of the program should be
unchanged.

Now to turn BP’ into an online obfuscator, all we need to do is to properly stream the

branching program. Here we specify the order that the matrices will be streamed:

108

/ / / / / / / /
S Mo, My Mo, My M, 0 Mt

When streaming a matrix M, we require that the matrix M is streamed column by col-
umn, i.e. we start by sending the first column of M, followed by the second column, then the
third, so on and so forth.

Now let’s take a look at how to evaluate the obfuscated program, i.e. the matrix branch-
ing program sent over the stream. Notice that we would need to do this using only space
linear to w.

To evaluate the program, we will keep a row matrix v € {0, 1}'** as our partial result.
When the streaming begins, we will set v = s received over the stream.

For7 € [h], we will compute b = Xinp(;) and listen to the stream of M; ,- Let the columns

of M}, be ¢, ¢z, ..., ¢, Since M, is streamed column by column, we will receive on the
stream ¢y, €, - . . , €. As the columns are being streamed, we will compute an updated partial
result V. = (v1,02,...,0,) on the fly. As we receive ¢; forj € [w], we would compute

v; = v - . After all the columns of M;b have been streamed and that v’ has been fully
computed, we setv = V.

In the end after we receive t’, we output BP'(x) = v - t'.

Notice that throughout the evaluation process, we use at most 2w memory bits, which is
linear to w.

However, one issue with this construction is that running the obfuscator requires com-
puting products of matrices of size w X w, and this inherently requires O(w?*) space. Next

up, we will show how we can use pseudorandom functions (PRFs) to help us carry out the

randomization process using only space linear to w.

109

CONSTRUCTION WITH ELEMENTARY RANDOM Row AND COLUMN OPERATIONS.

We will now give an alternate construction based on elementary row operations Ogg, which
will improve on the space requirements of the obfuscator. Namely, the obfuscator will still
have a large source of randomness, which we will assume can be queried many times. How-
ever, other than the randomness, the only additional space that is required will be O(w).
Since we are working mod 2, there is no scaling, so the only elementary row operations

are (1) B;; which adds row ; to row 7, and (2) C,; which swaps rows 7,7. B, ;, C;; are also

i
represented as matrices, obtained by performing the relevant row operation to the identity
matrix. Notice that C;; = B, - B;; - B, ;. Therefore, we consider just the B;;. Also notice
that B;jl = B, since we are working mod 2. Finally, note that B, ; corresponds to the column
operation which adds column 7 into column ;. It will be convenient to let B, to denote the
identity matrix.

Ogr will sample the Kilian randomizing matrices R from Ok; by sampling a sequence
BW, ... B of row operations, and setting R = [[_, B®” and R™' = []__B®. Note
that each B matrix is specified by a pair (7,7) € [w],7 # j. For each matrix R;, we generate
such a sequence. We will explain how to sample the row operations shortly. First, we ex-
plain, given query access to the B’s (or really, the (7, ;) pairs), how to compute the obfuscated
program stream.

We need to explain how to construct and stream BP'. To generate the bookend vector
s’ =s- Ry, start with s’ = s, write Rg as [[]_, B9, interpret each of the B(**) as a column
operation, and apply the appropriate column operation to s’ in order from# =1, ..., 7. To
generate the other bookend vector ' = R, - t, we start with t' = t, write R;l as HLT B,

interpret each of the B a5 a row operation, and apply the appropriate row operation to t'.

Both operations clearly take only space O(w), in addition to the storage requirements for the
B matrices.

For the M; p = RZ-__llM,-,le-, more care is needed. First, we need a sub-routine which, for
input o, computes r,, the a-th row of M, ;, - R,. This sub-routine works almost exactly the
same as our computation of s’ above. The 3-th entry of r,, gives the entry (¢,) of M, - R,.
We can thus compute cg, the 8-th column of M, ;, - R;, element by element.

To compute an entry («, 3) of Mj ,, we first compute the corresponding column cg. We
then compute ¢; = R/, - ¢4, analogous to how we computed t. Then we output entry a
of ¢i.

Now we explain how to sample the sequence BY, ... B, We will use the following

lemma:

Lemma 4.7.2. There exist constants Cy, Cy such that the following is true. For every w, there
exists a sequence of integers dy, . . ., d; and distributions Dy, ..., D, 7 < Cow,d, < Cu,
where each D, is a distribution over a sequence of d, of the B matrices. The guarantee is that if

the sequences BUY |- . B4

are sampled from D, (each sequence independently), then R =
11, Hf’zl B is distributed identically to a uniform random R mod 2, conditioned on R

being invertible.

Proof. The proof follows ideas from Randall

The base case w = 11is trivial: the only invertible matrix mod 2 is 1. So we set 7 = 0 in
this case.

We now assume the lemma holds true for w — 1. Thus, there is a sequence of Cy(w — 1)
distributions over sequences of Cj(w — 1) row operations generating a random (w — 1) X

(w — 1) matrix R’. We will construct R from R as follows.

e Firstlet

1 0
Ro =
0 R

* Next, construct R, which fills in the zeros of the first row with uniform random bits:

1 x 1 x
R1 = == R()
0 R’ 0 I
1 x
for a random row vector x. Note that the matrix can be constructed from
0 I

a sequence of w — 1 row operations. Also note that R; is a uniformly random matrix,
conditioned on the first column being 10“~! and the matrix being invertible. This
follows from the fact that, for matrices with the given first column, having determinant
1 (the only invertible possibility mod 2) is equivalent to having det(Ry) = 1. Thus, a
random invertible matrix with the given first column is identical to choosing a random

x, and then choosing a random invertible R,.

* Next, sample a random non-zero column vectory € {0,1}* \ 0“. Let C be any
invertible matrix such thaty = C - 10471 As explained by, C is actually a bijection
between the set of invertible matrices whose first column is y and the set of invertible

matrices whose first column is 10¥~ 1.
Thus, setting R, = C - R; will result in a uniformly random matrix R,.

Note that C can be taken to be constructed from a sequence of w2 of the B matrices:

3 to swap the first column with some non-zero position of y, and then w — 1 additional

ones to fill in the remaining positions of y.

Thus, we can take d;, < w + 2, and we have that Cow = 7 < 2 + Cy(w — 1). We can take

T = 2w to solve the recurrence. This completes the proof.]

Thus, we will use Lemma 4.7.2 to construct the distributions D,, and then sample the
matrices B®) from D,. Lemma 4.7.2 shows that the R matrices, and hence the view of the

adversary, are indistinguishable.

ELIMINATING SPACE wiTH PRFS.

We now turn to the final construction, which eliminates all but O(w) from the obfuscator’s
space requirements.

Oppryr will work exactly as Ogg, except that instead of sampling truly random samples
from D, it will do the following. For each R matrix, it will sample a uniformly random
key k for a pseudorandom function PRF. Then matrix sequence B will be computed as
D,(-;PRF(k,z)). That is, it will use PRF(k,) as the random coins needed by D,. In this
way, it can generate the B“*) matrices on the fly, without having to store them. Since each
sequence of B matrices has size at most O(w), it can generate the matrices space efficiently.

By the security of the PRF, the following is immediate:

Lemma 4.7.3. For any choice of Convert, assuming PRF is a secure PRF and Oy is k-time

VGB secure when using Convert, then Oprpr is k-time VGB secure when using Convert.

Thus, it suffices to analyze Ok; for a given choice of algorithm Convert; then we can

instantiate Opgr with Convert, and be guaranteed that security will carry over.

113

4.7.3 INsTANTIATING Convert

Now we will discuss how we specifically instantiate Convert, constructing the branching
program BP for a circuit C that we plug into our framework.

To motivate our construction, we recall that Barrington’s theorem '* plus Kilian random-
ization” already provides some very mild security: given the matrices corresponding to an
evaluation on any chosen input x (which selects one matrix from each matrix pair), the set of
matrices information-theoretically hides the entire program, save for the output of the pro-
gram on x.

This one-time security, however, is clearly not sufficient for full security. For starters, the
adversary can perform mixed-input attacks, where it selects a single matrix from each pair, but
for multiple reads of the same input, it chooses different matrices. This allows the attacker to
treat the branching program as a read-once branching program. It may be that, by evaluating
on such inputs, the adversary learns useful information about the program.

Another problem is linear-algebraic attacks. The rank of each matrix is preserved un-
der Kilian randomization. Assuming all matrices are full-rank (which is true of Barrington’s
construction), the eigenvalues of M - MZII are preserved under Kilian randomization.

In branching program obfuscation starting from *’, multilinear maps are used to block
these attacks. In our setting, we will instead use the storage bounds on the attacker. First, we
observe that Raz" essentially shows that linear-algebraic attacks are impossible if the attacker
cannot even record the matrices being streamed. While we do not know how to apply Raz’s
result to analyze our scheme, we conjecture that for appropriately chosen matrices, it will be
impossible to do linear-algebraic attacks.

The next main problem is input consistency. To accomplish this, we will do the follow-

114

ing. We will first run Barrington’s theorem to get a branching program consisting of 5 x 5
matrices. We will then construct an “input consistency check” branching program, and glue
the two programs together.

As a starting point, we will construct a read-once matrix branching program BP; (one
that reads each input bit exactly once) that outputs 0 on an all-zero or all-one input string,
and outputs 1 on all other inputs. Looking forward, we will insert this program into the
various reads of a single input bit: any honest evaluation will cause the branching program to
output o, whereas an evaluation that mixes different reads of this bit will cause the program

to Olltpllt I.

Matrix Branching Program BP;:
* The width, the length, and the input length of the branching program are all L.
* inpis the identity function, i.e. M, reads x; as input.

* For7 € [L], M,y = I where I, is the L x L identity matrix. M;; is the L X L

permutation matrix representing shifting by 1. Specifically,

0(L—1)><1 I,
Mz',l -
1 OIX(Lfl)
* The left bookend is s = (1 00 --- 0> and the right bookend is t =

(011 - I)T.

I1§

We now briefly justify why BP; works as desired. Let 0 < w < L be the Hamming weight
of the input x. Notice that when evaluating BP;(x), the number of M;; matrices chosen is
exactly w, and the rest of the chosen matrices are all M, , the identity matrix. Therefore, the
product of all the M matrices is equivalent to a permutation matrix representing shifting by
w. When this product is left-multiplied by s = <1 00 --- 0) , we get a resulting row
matrix s’ that is equivalent to s right-shifted by w. Notice that s’ has a single 1 at position (w
mod L) + 1. When multiplying s’ by the right bookend t , the result will always be 1, unless
(w mod L) +1 = 1. The only w values that satisfy (w mod L) +1 = larew = 0 and
w = L, which correspond to x = 0fandx = 1* respectively. Hence BP; gives us the desired

functionality.

Next up, we will expand BP; to a read-once matrix branching program BP, with the
following functionality: for a set S of input bits, BP, outputs 0 if and only if all the input
bits within S are identical (the input bits outside of § can be arbitrary). This is accomplished
by simply setting the matrices for the inputs in S to be from BP;, while the matrices for all
other inputs are just identity matrices.

Next, we describe a simple method of taking the “AND” of two matrix branching pro-
grams with the same length, input length and input function. Given matrix branching pro-
grams BP? = (inp, {M, }icipuciony, s, t*) and BP? = (inp, {M; biepve(oay. s, t)
with length / and input length /¢, we construct a new brancing program BPC such that

BP® = BP“(x) - BP®(x) for all inputs :

116

Constructing BP“ = AND(BP“, BP?):

* The length, the input length, and the input function of BP€ are also 4, £ and inp,

respectively. The width of BPCis we = w, - wp, where w, and wp are the widths

of BP4 and BP?, respectively.

* Forall/ € [p]and b € {0, 1}, compute M7, = M/, ® M/, where ® denotes the
matrix tensor product (Kronecker product). Notice that the widths of Mf b1 Mf »

and be are wy, wg, and w,wpg as desired.

* The left bookend is s¢ = s? ® s®, and the right bookend is t“ =t! @t

Using the mixed-product property of matrix tensor products, it should be easy to verify
that BP“(x) = BP“(x) - BP”(x) as desired.

Next, let BP, be a random read-once matrix branching program with input length Z and
width 7 = poly(\). We can sample such a branching program by uniformly sampling each
of its matrices and bookends.”

We will assume that the program computed by BP.,, gives a pseudorandom function. This
is, unfortunately not strictly possible: write x = (x1, x,) for two contiguous chunks of input
bits x;, x,. Then the matrix <BP*(x1, xz)) for any sets X;, X5 will have rank at
most 7. By setting X;, X5 to be larger than nj,e())(;zzif; distinguish this matrix consisting of

outputs of BP, from a uniformly random one. The good news is that this attack requires a
1% Y g q

large amount of space, namely m?. If the attacker’s space is limited to be somewhat less than

"When this is later put through the basic framework, we would need to generate these random matrices
using a PRF. This would allow us to reconstruct it at a later point.

117

m?, this plausibly leads to a pseudorandom function. We leave justifying this conjecture as
an interesting open question.

Now consider the branching program BP; = AND(BP,, BP,.). Notice that BP; has
width 7 and is equal to o on inputs x where V7, j € S, x; = x;, and is equal to BP,,(x) on all
other x.

With these tools in hand, we are now ready to show how to enforce input consistency on
an existing matrix branching program.

Given a matrix branching program BP = (inp, {M;; }.c[y);0cf0,13, 8, t) with length b,

width w and input length ¢, we construct the branching program BP’ as follow:

Input Consistent Branching Program BP':

e BP’ has the same length A, input length ¢, and input function inp. The width is

now w + mhb where m = poly ().

* Forallj € [f], let S; be the set of all reads of x;, i.e. S; = {7|¢ € [b],inp(¢) = j}.
Construct the branching program Bng) using the BP, construction with input
length hand § = §;. Overwrite the input function of BPg') with inp so that it now

takes x € {0, 1}* as input. Notice that Bng) (x) = 0if and only if all reads of the

j-th bit of x are identical.

Sample a fresh random matrix branching program BPS]) with length b, width 2,
input length ¢ and input function inp. Compute BPg/) = AND(BPg), BPY),

Denote the matrices in BPgi) as {Mgz}ie[h];be{o,l}s and the bookends as s/, £\,

* Forall7 € [h],and b € {0, 1}, construct the matrix M; , by adding all the Ml({z’s

118

to the diagonal as M}, = diag(M, 4, Ml(lb) e ,Ml(fb)). Notice that the width of

M, isw+ 3 g m|S)| = w+ mb.
* The left bookend is now s’ = (s s @ ... S(Z)) and the right bookend

T
isnow t' = (tr (tu))T (t(z>)T (tw))T) .

Notice that we have

BP'(x) = BP(x +ZBP(’ = BP(x) + _ BPY (x)BPY(x).
JEl)

If all reads of the input x are consistent, then we have BPY(x) = 0 for all /, and the
program outputs the original output BP'(x) = BP(x).

If the reads of the input x are not consistent, then Bng) (x) = 1 for some 7, and conse-
quently BPY(x) will be added to the program output. By our conjecture that BPY (x) acts
as a PRF to space-bounded attackers, we thus add a pseudorandom value to BP (), hiding
its value. Thus, we presumably force input consistency. BP’ will be the output of Convert,

which we then plug into our framework.

4.8 CANDIDATE CONSTRUCTION 2

Now we present the second candidate construction from digital time-stamping and standard-
model obfuscation. The concept of a digital time-stamp was first introduced by Haber and

Stornetta®’, and since then we have seen various instantiations of digital time-stamping sys-

119

tems. One construction of particular interest is by Moran, Shaltiel and Ta-Shma ™, where
they construct a non-interactive time-stamping scheme in the bounded storage model. This

will be what we base our construction on.

Definition 4.8.1 (Non-Interactive Digital Time-stamp in the Bounded Storage Model). Ler
A, 1 be the security parameters. A non-interactive digital time-stamp scheme in the bounded
storage model with stamp length { = O(n) consists of a tuple of PPT algorithms 11 = (Stream,

Stamp, Ver) that each uses up to O(n) memory bits:

o Stream(1*,1") — (s, k) takes as input security parameters \, n and outputs a stream

s and a short sketch k of the stream.

* Stamp(ss., x) — o takes asinput the stream ss, and an input x € {0, 1}, and outputs

astampo € {0,1}-

* Ver(k,x,0) — 0/1 takes as input the sketch k, an input x € {0,1}* and a stamp o

and outputs a single bit 0 or 1.
We require correctness and security of the digital time-stamp scheme.

Definition 4.8.2 (Correctness). We require that for all x € {0,1}*, we have
Pr [Ver(k,x,0) = 1: (s5,k) + Stream(1*,1"), 0 < Stamp(ss,x)| = 1.

For security, we ideally want that an adversary cannot produce a valid time-stamp on
an input x that the adversary did not run Stamp on. Instead, " notice that an adversary
with S(7) memory bits can store at most S() /¢ time-stamps, and therefore define security

as upper bounding the number of time-stamps an adversary can produce. While not the

I20

same as the ideal goal, it at least implies the adversary cannot produce arbitrary time-stamped

messages.

Definition 4.8.3 (Security). We require that for all adversary A that uses up to S(n) memory

bits, we bhave

(55, %) < Stream(1*)

M ASEMPO) (5
Pr |V(x,0) € M, Ver(k,x,0) =1 < negl(\).
] > 27

\V/(Xl, 0-1)7 (x27 O-2> € M) X1 7é x2_

Now we show how we can use such a digital time-stamping scheme to constructan online

obfuscator.

Construction 4.8.1. Let \, n be the security parameters. Let TSP be a digital time-stamping
scheme in the bounded storage model. Let VGB = (Obf, Eval) be a dlassical VGB obfuscator

for all circuits. We construct our online obfuscator for the circuit class {Cy} as follows:
* Obf(C): Run TSP.Stream(1*,1%) to stream s and obtain the sketch k. Consider the

Jfollowing program P :

C(x) #f TSP.Ver(k,x,0) =1
PC7/€<.X', U) = .

1 otherwise

Let P < VGB.Obf(Pcy) be the standard-model VGB obfuscation of Pc . The obfus-

cated program is simply the stream s, followed by P.

I21

* Eval((ss, P), x): Toevaluatethe obfuscated program, firstcomputeo <— TSP.Stamp(ss,, x)

when s, is being streamed. Then the output is simply VGB.Eval(P, (x, 0)).

Correctness is straightforward. One detail is that, using the time-stamping protocol of ",
the sketch #, and thus P¢;, will be of size O(n) bits. Thus, we need to use an obfuscator
such that VGB.Obf only expands the program by a constant factor. We conjecture that the
constant-overhead construction of” will work here. Alternatively, one can use branching-
program based obfuscation directly from multilinear maps, for example " and follow-ups.
even gives evidence that these constructions may be VGB secure. The difficulty is that the
constructions blow up the input program by a polynomial factor, and therefore cannot be
written down. However, as they have the form of a branching program, they can be streamed
much the same way as we stream Candidate Construction 1. We therefore conjecture that
some instantiation of VGB.Obf will lead to a secure online VGB obfuscator that can also be

streamed in low space. We leave proving or disproving this conjecture as an open question.

I22

5

Incompressible Cryptography

5.1 INTRODUCTION

Security breaches are ubiquitous. Therefore, it is natural to wonder: will encrypted messages
remain secure, even if the secret decryption key is later leaked? Forward secrecy deals exactly
with this problem, but requires either multi-round protocols or key updates, both of which
may be undesirable in many scenarios. And in the usual time-bounded adversary model,
unfortunately, such limitations are inherent: an adversary can simply store the ciphertext
and wait for the secret key to leak, at which point it can easily decrypt.

In this chapter we ask: can we force a would-be “save-it-for-later adversary” to actually
store the ciphertext in its entirety, for the entire length of time it is waiting for the secret key
to leak? Ata minimum such storage may be inconvenient, and for very large files or long time
frames, it may be prohibitively costly. Even for short messages, one may artificially increase
the ciphertext size, hopefully forcing the adversary to use much more storage than message
length. We may therefore hope that such an incompressible encryption scheme maintains the

privacy of messages even if the secret key is later revealed.

Remark s.1.1. For an illustrative example, an individual with a gigabit internet connection
can transmit ~101B per day, potentially much more than their own storage. Of course many
entities will have 10TB or even vastly more, but an incompressible scheme would force them
to devote 10TB to storing a particular ciphertext for potentially years until the key is revealed.
Across millions or billions of people, even powerful adversaries like state actors would only be able

to devote such storage to a small fraction of victims.

Unfortunately, traditional public key encryption schemes are not incompressible; an ad-

versary may be able to store only a short digest of the ciphertext and still obtain non-trivial

124

information about the plaintext once the secret key is leaked. For example, for efficiency rea-
sons, hybrid encryption is typically used in the public key setting, where the encryption of a

message 72 may look like:

(Enc(pk,s) , G(s) ®m) .

Here, s is a short seed, and G is a pseudorandom generator used to stretch the random seed
into a pseudorandom pad for the message 7. A save-it-for-later adversary need not store
the entire ciphertext; instead, they can store just Enc(pk, s) as well as, say, the first few bits of
G(s5) @ m. Once the secret key is revealed, they can learn s and then recover the first few bits of
m. This may already be enough to compromise the secrecy of 7. Such an attack is especially
problematic if we wanted to artificially increase the ciphertext size by simply padding the
message and appending dummy bits, since then the first few bits of 7 would contain the
entire secret plaintext.

The compressibility issue is not limited to the scheme above: we could replace G(s) & m
with a different efficient symmetric key encryption scheme such as CBC-mode encryption,
and essentially the same attack would work. The same goes for bit encryption as well.

Incompressible public key encryption instead requires that if the adversary stores any-
thing much smaller than the ciphertext, the adversary learns absolutely nothing about the

message, even if the secret key later leaks.

Remark s.1.2. Wenotethat plain public key encryption does have some incompressibility prop-
erties. In particular, it is impossible, in a plain public key encryption scheme, for the adversary
to significantly compress the ciphertext and later be able to reconstruct the original ciphertext.
However, this guarantee implies nothing about the privacy of the underlying message should the

key leak.

125

INCOMPRESSIBLE SIGNATURES. A canonical application of signatures is to prevent man-
in-the-middle attacks: by authenticating each message with a signature, one is assured that
the messages were not tampered with. However, a man-in-the-middle can always delay send-
ing an authenticated message, by storing it for later. The only way to block such attacks in
the usual time-bounded adversary model is to use multi-round protocols, rely on synchro-
nized clocks and timeouts, or have the recipients keep state, all of which may be undesirable.
We therefore also consider the case of incompressible signatures, which force such a delaying
adversary to actually store the entire signature for the duration of the delay.

In slightly more detail, in the case of plain signatures, a forgery is a signature on any zew
message, one the adversary did not previously see signed. The reason only new signed mes-
sages are considered forgeries is because an adversary can simply store a valid signature it sees,
and later reproduce it. An incompressible signature, essentially, requires that an adversary who
produces a valid signature on an existing message must have actually stored a string almost as
large as the signature. By making the signatures long, we may hope to make it prohibitively
costly to maintain such storage. As in the case of encryption, existing signature schemes do
not appear to offer incompressible security; indeed, it is usually desired that signatures are

very short.

FEATURE: LOW-STORAGE FOR STREAMING HONEST USERS. Given that communication
will be inconveniently large for the adversary to store, a desirable feature of incompressible
ciphertexts and signatures is that they can be sent and received with low storage requirements
for the honest users. In such a setting, the honest users would never store the entire cipher-
text or signature, but instead generate, send, and process the communication bit-by-bit in a

streaming fashion.

126

FEATURE: HiGH RATE. With incompressible ciphertexts and signatures, communication
is set to be deliberately large. If the messages themselves are also large, it may be costly to fur-
ther blow up the communication in order to achieve incompressibility. Therefore, a desirable
feature is to have the rate—the ratio of the maximum message length to the communication
size—be as close to 1 as possible. In this way, for very large messages, there is little communi-

cation overhead to make the communication incompressible.

5.1.1 PRIOR WORK

Dziembowski* constructed information-theoretically secure symmetric-key incompressible
encryption (referred to as forward-secure encryption) via randomness extractors. The focus
of our work is on public-key encryption and signature schemes, which inherently cannot be
information-theoretically secure.”

Also, notice that the notion of incompressible cryptography is very similar to disappear-
ing public key encryption and digital signatures introduced in the previous chapter, except
with an importantdistinction: disappearing cryptography assume both honest and malicious
parties operate as space-bounded streaming algorithms throughout their operation. Honest
users are assumed to have a somewhat lower storage bound than the adversary’s.

In terms of the functionality requirement for honest users, disappearing cryptography
corresponds to the low-storage streaming variant of incompressible cryptography. However,

in terms of the security requirement, disappearing cryptography is somewhat weaker, since

"The symmetric-key scheme of ** also only offers one-time security. However, a simple hybrid argument
shows that this implies many-time security, where the adversary can compress each of many ciphertexts sepa-
rately and later sees the secret key. However, it inherently does not offer any security if the adversary can jointly
compress many ciphertexts, even if the compressed value is much smaller than a single ciphertext! In contrast,
public-key incompressible encryption automatically ensures security in such setting via a simple hybrid argu-
ment.

127

it restricts the adversary to also be space-bounded throughout its entire operation, and ob-
serve the ciphertexts/signatures produced by the cryptosystem in a streaming manner. On
the other hand, incompressible cryptography allows the adversary to observe each cipher-
text/signature in its entirety and compute on it using an unrestricted amount of local mem-
ory, but then store some small compressed version of it afterwards. Some disappearing schemes
may be insecure in the incompressible threat model: for example, one of the disappearing
ciphertext schemes from the previous chapter could potentially even be based on symmetric
key cryptography, despite being a public key primitive.” Yet public key incompressible cipher-
texts easily imply public key encryption, which is believed to be stronger than symmetric key
cryptography

In summary, incompressible cryptography with low-storage streaming is also disappear-

ing, but the reverse direction does not hold.

5.1.2 OUR RESULTS
We give new positive results for incompressible cryptography:

* Under the minimal assumption of standard-model public key encryption, we con-
struct a simple incompressible public key encryption scheme. The scheme supports
streaming with constant storage, independent of the ciphertext size. As a special case,
we achieve provably secure disappearing ciphertexts with optimal honest-user storage
and under mild assumptions, significantly improving on disappearing cryptography
from the previous chapter. The ciphertext size is |¢| = |S| + |7] x poly(\), where ||

is the adversary’s storage, || the message size, and A the security parameter.

“It’s not hard to see that one-way functions, and therefore symmetric key cryptography, are implied by
disappearing ciphertexts, since the secret key can be information-theoretically recovered from the public key.

128

* Under the minimal assumption of one-way functions, we construct incompressible
signatures. Our scheme supports streaming with constant storage, independent of
the signature size. Thus we also achieve provably secure disappearing signatures un-
der minimal assumptions, again significantly improving on disappearing cryptography
from the previous chapter. The total communication (message length plus signature

size) is |S] + |m| + poly(N).

* Under standard-model indistinguishability obfuscation (iO), we construct “rate 1” in-
compressible public-key encryption, where |¢| = |S|4-poly(\) and the message length
can be as large as roughly [S]. In particular, for very large messages, the ciphertext size

is roughly the same as the message size.

The public keys of our scheme are small, but the secret keys in this scheme are at least as
large as the message, which we explain is potentially inherent amongst provably-secure

high-rate schemes.

Along the way, we give the first rate-1 construction of functional encryption for cir-

cuits, where |¢| = |m| + poly()).

* We consider a notion of “rate-1” incompressible signatures, where the total communi-
cation is only |S] 4 poly()), and the message can be as large as roughly |S]. Note that
the signature by itself must have size at least |S] for incompressibility (since 72 may be
compressible), and so if we separately send the message and signature, the total com-
munication would be at least |S| + ||, which is not rate 1. Instead, we just send a

signature and require the message to be efficiently extractible from the signature.

We show that rate-1 incompressible signatures are equivalent to incompressible encod-

129

ings, defined by Moran and Wichs . By relying on the positive results of Moran and
Wichs ™, we obtain such signatures under either the Decisional Composite Residuos-
ity (DCR) or Learning With Errors (LWE) assumption, in either the CRS or random
oracle model. The random oracle version supports low-space streaming, as does the
CRS model if we assume the (large) CRS is streamed. On the other hand, by rely-
ing on the negative results of Moran and Wichs”’, we conclude that a provably secure

rate-1 construction in the standard model is unlikely.

5.1.3 OTHER RELATED WORK

B1G-KEY CRYPTOGRAPHY IN THE BOUNDED RETRIEVAL MODEL. The study of big-key
cryptography in the Bounded Retrieval Model (BRM) has evolved through a series of works *#77 %%
The high-level difference is that in the BRM, the secret keys are made large to prevent exfiltra-
tion, while the communication (e.g., ciphertexts, signatures) are kept small. Incompressible
cryptography is the reverse: we make the communication large to prevent an adversary from
being able to remember it in its entirety, while the secret key is ideally small. On a technical
level, while there are some high-level similarities such as relying on a combination of compu-

tational and information-theoretic techniques, the concrete schemes are quite different.

SYMMETRIC CRYPTOGRAPHY WITH MEMORY-BOUNDED ADVERSARIES. Therehasbeen
various studies into the symmetric-key setting where the adversaries are memory-bounded.
For instance, the work by Rivest " introduces all-or-nothing encryption, a symmetric-key en-
cryption scheme such that only knowing some individual bits of the ciphertext reveals no
information about the message, even if the adversary is later given the secret key. This is sim-

ilar to the forward-secure encryption due to Dziembowski*’, except that in forward-secure

130

encryption, the adversary is allowed to compute an arbitrary function (with a small-sized
output) of the ciphertext, instead of only knowing a few individual bits of it. So all-or-
nothing encryption can be thought of as disappearing encryption in the symmetric-key set-
ting, whereas forward-secure encryption is closer to the symmetric-key version of incom-
pressible encryption. The work by Zaverucha” further extends the idea of all-or-nothing
encryption, constructing a password-based encryption scheme. Building on this, the work
by Biryukov and Khovratovich ' constructs memory-hard encryption by combining the idea
from Zaverucha” together with an external memory-hard function, which allows for high
memory bounds even with a small block size. All of these prior works are in the symmetric-
key setting, and it is not obvious how to extend them to the public-key setting as we study in

this chapter.

RATE-1 INCOMPRESSIBLE ENCRYPTION FROM STANDARD ASSUMPTIONS. In alater fol-
lowup work, Branco, Déttling, and Dujmovic*’ constructed rate-1 incompressible encryp-
tion with CCA security from programmable hash proof systems (HPS), plain-model incom-
pressible encodings "’ and a pseudorandom generator (PRG). These primitives can be realized

from, e.g. the DDH and additionally the DCR or the LWE assumptions,

5.1.4 TECHNICAL OVERVIEW

INCOMPRESSIBLE ENCRYPTION. W first consider incompressible public key encryption.
The syntax is identical to that of standard-model encryption, but the security game is differ-

ent:

1. The challenger first gives the adversary the public key.

131

2. The adversary then produces two messages 7z, 7.

3. The challenger encrypts one of the two messages, as the ciphertext c.
4. Now the adversary produces a state s of size somewhat smaller than c.
5. The challenger then reveals the secret key.

6. The adversary, given only the small state s but also the secret key, now makes a guess

for which message was encrypted.

Note that, except for the size of the state s being bounded between Steps 4 and 6, the size of
the adversary’s storage is unbounded. Itis also easy to see that this definition implies standard

semantic security of public-key encryption.

Remark s.1.3. Note that this security definition is quite similar to that of disappearing pub-
lic key encryption from the previous chapter with two distinctions. Firstly, in the disappearing
encryption security experiment, there is no Step 4 as above. Instead, the adversary is bounded by
some space throughout the entire experiment. Additionally, functionality wise, disappearing
encryption requires the protocol to be executable by bonest parties with some space bound lower
than the adversary’s storage. In our setting, we do not consider this to be an inherent require-
ment, but rather a desirable feature that some of our schemes satisfy. As we will see in Remark

§.1.4, this feature is incompatible with rate-1 schemes, and hence we will drop it in that setting.

Our SoruTtioN. We give a construction of incompressible encryption in Section 5.3, un-
der the minimal assumption of generic public key encryption.
We describe our solution using functional encryption (FE), which is a form of public

key encryption where the secret key holder can give out function secret keys for functions

132

/; a function secret key allows for learning f{m2) but nothing else about the message. For
our application, we only need a very special case of single-key functional encryption, which
we instantiate with a simple and potentially practical construction from generic public key

encryption scheme. Our incompressible encryption scheme works as follows:

* The public key is just the public key for the underlying FE scheme. The secret key is a

function secret key for the function £, defined as

s ifb=0
Sols b) =

s@ov ifb=1

where the value v is chosen uniformly at random and hard-coded into f,. Here, 5, v are

reasonably short strings, whose length will be discussed shortly.

* To encrypt m, choose a random s, and compute ¢ <— FE.Enc(FE.mpk, (s5,0)) as an
encryption of (s, 0) under the FE scheme. Then choose a large random string R. In-
terpret s as the pair (¢, #), where s a string of length equal to the message length, and
s is the seed for a strong extractor. Then compute z = Extract(R;s") & ¢ & m. The

final ciphertextis (¢, R, z).

* To decrypt, use the FE secret key to recover s = (v, ¢) from ¢. Then recover m =

z @ Extract(R;s) d .

We can generate and transmit the string R in a streaming fashion. We can then use an online
extractor”’ so that Extract(R;s') can be computed without having to store R in its entirety.
Note that R is the only “big” component of the ciphertext, so encryption and decryption

therefore require small space.

133

We prove security through a hybrid argument. First, we use FE security to switch to ¢
being generated as ¢ <— FE.Enc(FE.mpk, (s@v,1)). Since this ¢ decrypts equivalently under
the secret key, this change is indistinguishable.

We then observe that the string # = 5 @ v being encrypted under the FE scheme, as
well as the string z included in the final ciphertext, are both just uniformly random strings.
We can therefore delay the generation of the secret key and » until the very end of the exper-
iment. Now we think of the adversary’s state (as well as some other small values needed to
complete the simulation) as a leakage on the large random string R. Since the adversary’s stor-
age is required to be small compared to R, R has min-entropy conditioned on this leakage.
This means we can invoke the randomness guarantee of the randomness extractor to replace
Extract(R;s') with a uniform random string. At this point, 7 is one-time-padded with a

uniform string, and therefore information-theoretically hidden.

We explain how to instantiate the functional encryption scheme. Since the adversary only
ever sees a single secret key, we can build such a functional encryption scheme generically from
public key encryption, using garbled circuit techniques*”. On the other hand, our functional
encryption scheme only needs to support an extremely simple linear function. We show a

very simple and potentially practical solution from any public key encryption scheme.

Remark s.1.4. We note that our scheme has a less-than-ideal rate, since the ciphertext size is
at least as large as the adversary’s storage plus the length of the message. Low rates, however,
are inherent to schemes supporting low-storage streaming. Indeed, the storage requivements of
the bonest users must be at least as large as the message, and in the high-rate case this means the
honest users must be capable of storing the entire ciphertext. This remains true even if the mes-

sage itself is streamed bit-by-bit, which can be seen as follows: by incompressibility, the decrypter

134

cannot start outputting message bits until essentially the entire stream has been sent. Otherwise,
an attacker can store a short prefix of the ciphertext, and then when it gets the secret key mimic
the decrypter until it outputs the first message bit. Now, at the point right before the decrypter
outputs the first message bit, the entire contents of the message must be information-theoretically
contained within the remaining communication (which is short) and the decrypter’s state, since
the decrypter ultimately outputs the whole message. Thus the decrypter’s state must be almost as

large as the message.

A RATE-1 SOLUTION. We now discuss how we achieve a rate-1 scheme, using indistin-
guishability obfuscation. This is our most complicated construction, and we only give a brief
overview here with the full construction in Section 5.4.

The central difficulty in achieving a rate-1 scheme is that we cannot guarantee a ciphertext
with large information-theoretic entropy. Indeed, the ciphertext must be almost as small as
the message, so there is little room for added entropy on top of the message. But the message
itself, while large, many not have much entropy. Therefore, our approach of using random-
ness extraction to extract a random string from the ciphertext will not work naively.

Our solution, very roughly, is to have the large random value in the secret key. Using a
delicate argument, we switch to a hybrid where the ciphertext is just an encryption of large
randomness R, and the secret key contains the message, masked by a string extracted from
R. Now we can mimic the low-rate case, arguing that given the small state produced by the
adversary, R still has min-entropy. Thus, the message » is information-theoretically hidden.

The result is that we achieve an incompressible encryption scheme whose rate matches
the rate of the underlying functional encryption scheme. Unlike the low-rate case, our FE

scheme appears to need the full power of FE for circuits, since it will be evaluating crypto-

135

graphic primitives such as PRGs and extractors. Unfortunately, all existing FE schemes for
general circuits, even using iO, have poor rate. For example, if we look at the original iO
scheme of Garg ez al. ", the ciphertext contains zwo plain public key encryption encryptions
of the message, plus a NIZK proof of consistency. The result is that the rate is certainly at
most 1/3. Another construction due to Boyle ez al. ** sets the ciphertext to be an obfuscated
program containing the message; since known obfuscation schemes incur a large blowup, the
scheme is not rate-1.

We give a novel rate-1 FE scheme (with many key security), by building on ideas from
Bonehand Zhandry*'. They build an object called private linear broadcastencryption (PLBE),
which can be seen as a special case of FE for simple comparison functionalities. However,
their approach readily generalizes to more complex functionalities. The problem with their
construction is that their proofincurs a security loss proportional to the domain size. In their
case, the domain is polynomial and this is not a problem. But in our case, the domain is the
message space, which is exponential. One may hope to use complexity leveraging, but this
would require setting the security parameter to be at least as large as the message. However,
this will not give a rate-1 scheme since the ciphertext is larger than the message by an additive
factor linear in the security parameter.

We therefore devise new techniques for proving security with just a polynomial loss, even
for large messages, thus giving the first rate-1 FE scheme for general circuits, from iO and one-

way functions. Details in Section 5.7.

Remark s.1.5. We note that the final construction of rate-1 incompressible encryption bas very
short public keys, but large secret keys. We therefore leave as an interesting open question devising

a scheme that also has short secret keys. However, achieving such a scheme with provable security

136

under standard assumptions appears bard. Indeed, cryptographic assumptions typically make
no restrictions on the adversary’s storage. The issue is that the message itself may bave little en-
tropy, and so to prove that a ciphertext is incompressible it seems the computational assumptions
will be used to transition to a hybrid where the ciphertext bas nearly full entropy (indeed, this
is how our proof works). But this transition happens without space bounds, meaning the reduc-
tion actually is capable of decrypting the ciphertext and recovering the message once the key is
revealed. Yet in this hybrid the ciphertext was “used up” in order to make it high-entropy, and
it seems the only place left to embed the message is the secret key (again, this is how our proof
works). If the message is large, it therefore seems the secret key must be large as well. We believe
this intuition can be formalized as a black-box separation result, similarly to analogous results

of”’, but we leave this for future work.

INCOMPRESSIBLE SIGNATURES. Anincompressible signature scheme is defined by the fol-

lowing experiment:
1. The challenger first gives the adversary the public key.

2. The adversary makes repeated signing queries on arbitrary messages. In response, the

challenger produces a signature on the message.

3. After observing many signatures, the adversary must produce a small state s of size

somewhat smaller than a single signature.

4. Next, the adversary, is given the small state 5, and wins if it produces a valid signature

on any message, potentially even one used in a prior signing query.

137

Note that, except for the size of the state s being bounded between Steps 3 and 4, the size of

the adversary’s storage is unbounded.

Remark s5.1.6. This definition is also quite similar to that of disappearing signature from the
previous chapter except for two differences. For disappearing signatures, the security experiment
does not have Step 3 as above, and instead requires the adversary to be bounded by some space
throughout the entire experiment. Functionality wise, disappearing signature requires the
scheme can be run by honest parties with a space bound somewhat lower that the adversary’s

storage, whereas we don’t require that for incompressible signatures.

Our SorLuTiON. We give a very simple construction of incompressible signatures in Sec-
tion s5.5. To sign s, first choose a large uniformly random string R, and then compute
o <« Sign(sk, (R,m)), where Sign is a standard-model signature scheme. The overall
signature is then (R, o). Verification is straightforward.

Both signing and verification can be evaluated in a low-space streaming fashion, provided
Sign can be evaluated as such. One can always assume this property of Sign: first hash the
message using a streaming-friendly hash function such as Merkle-Damgard, and then sign the
hash. Since the hash is small and computing the hash requires low-space, the overall signing
algorithm is low space.

For security, consider an adversary which produces a small state s somewhat smaller than
the length of R. Since R is random, it will be infeasible for the adversary to re-produce R
in Step 4. Therefore, any valid signature must have an R different than any of the messages

previously signed. But this then violates the standard unforgeability of Sign.

ARATE-1 SOLUTION. InSection 5.6, we modify the above construction to get a rate-1 solu-
tion. We note that “rate” here has to be defined carefully. In the above solution, the signature
size is independent of the message size, and so it seems that the signature has good rate. How-
ever, communication will involve both the signature 2nd the message, and so the total length
of the communication will be significantly larger than the message. We therefore want that
the total communication length is only slightly longer than the message being signed.

On the other hand, if the message is very long, one may naturally wonder whether we
can just sign the message using any standard-model signature scheme, and have the resulting
communication be rate-1. However, a long message may in fact be compressible. What we
want is to achieve rate- 1 total communication, and incompressibility, even if the message may
be compressed.

We therefore define a rate-1 incompressible signature as an incompressible signature where
the signature is only slightly longer than the message, and where there is a procedure to ex-
tract the message from the signature. In this way, all that needs to be sent is the signature

itself, and therefore the total communication remains roughly the same as the message.

EQUIVALENCE TO INCOMPRESSIBLE ENCODINGS. We nextdemonstrate thatincompress-
ible signatures are equivalent to incompressible encodings”*. These are public encoding schemes
where the encoding encodes a message into a codeword ¢ that is only slightly longer than the
message. From ¢, the original message can be recovered using a decoding procedure. For se-
curity, the adversary then receives the codeword as well as the message, tries to compress the
codeword into a small storage 5. Then the adversary, given s and the message, tries to recover
the exact codeword c.

A rate-1 incompressible signature (with small public keys) gives an incompressible encod-

139

ing: to encode a message, simply generate a new public/secret key pair, and sign the message.
The codeword c is then the public key together with the signature. Decoding and security
follow readily from the message extraction procedure and security of the incompressible sig-
nature.

In the other direction, to sign a message, firstincompressibly encode the message and then
sign the result using a standard-model signature scheme. The final signature is the codeword
together with the standard-model signature. Extraction follows from the decoding proce-
dure. If the incompressible encoding supports low-space streaming, so does the signature
scheme. For security, since the adversary cannot produce the original codeword that was
signed due to the security of the incompressible encoding, they must produce some other
codeword. But a valid signature would also contain a standard-model signature on this new

codeword, violating the security of the signature scheme.

Moran and Wichs™ instantiate incompressible encodings under either the Decisional
Composite Residuosity (DCR) or Learning With Errors (LWE) assumptions, in either the
CRS or random oracle models. We observe that their incompressible encodings simply break
the message into blocks of length poly () and encode each block separately; as such they can
be easily streamed in low space, though the CRS-based scheme would need the CRS to be
streamed as well. We obtain the incompressible signatures under the same assumptions in
the same models, with low-space streaming.

We also note that we can have the signer generate the CRS and include it in the public key,
giving a standard-model incompressible encoding scheme with large public keys. Note that
such ascheme is notimmediately equivalent to incompressible encodings, since the codeword

contains the public key, and would therefore be too large.

140

On the other hand,”” show that a CRS or random oracle is somewhat necessary, by giving
a black box separation relative to falsifiable assumptions in the standard model. Due to our
equivalence, this implies such a black box impossibility for incompressible signatures in the

standard model as well.

5.1.5 ACKNOWLEDGEMENTS

We would like to thank Ji Luo, Chenzhi Zhu, and the audience members of the CMU Cy-
Lab Crypto Seminar for pointing out an issue regarding Definition s.s.1 for incompressible

signatures and helpful discussions on that matter.

5.2 CHAPTER PRELIMINARIES

DiGITaL SIGNATURES. We generalize the syntax of a signature scheme, which will ulti-
mately be necessary to achieve a meaningful high “rate”. Instead of producing a signature
that is sent along side the message, we would implicitly embed or encode the message into the
signature. The signature is then all that is sent to the receiver, from which the message can be
decoded and verified. Any standard signature scheme can readily be viewed in our generalized
syntax by just calling (72, o) the “signature.”

A public key signature scheme for message space {0, 1}* and signature space {0, 1}* is

a tuple of PPT algorithms IT = (Gen, Sign, Ver) such that:
* Gen(1*) — (vk, sk) samples a verification key vk, and a signing key sk.

* Sign(sk, m) — o takes as input the signing key sk and a message 72, and computes a

signature o that implicitly contains the message m.

141

* Ver(vk,o) — m/L takes as input the verification key vk and a signature o, and out-
puts either the message 7 or L. Outputting 7 means that the signature verifies, and

outputting | means that the signature is invalid.

Definition s.2.1 (Correctness). Forall \ € N and message m € {0,1}", let (vk, sk) +
Gen(1%), then we have Pr[Ver(vk, Sign(sk, m)) = m] > 1 — negl(\).

We modify the security experiment slightly by asking the adversary to output a signa-
ture o instead of a message-signature pair, and the adversary wins the game if and only if
Ver(vk,o) ¢ {L,my, ..., m,} where m/;’s are the previously queried messages. The “rate”

of the signature scheme is defined to be L,, /L.

5.3 INCOMPRESSIBLE ENCRYPTION: OUR Basic CONSTRUCTION

Here we show how to construct an incompressible public key encryption scheme with low
“rate”, i.e. the ratio of the message size to the ciphertext size. First, we define what it means

for a public key encryption scheme to be incompressible.

5.3.1 DEFINITION

We give the definition of incompressible encryption, which is based on the similar definition
of disappearing encryption“’. For security parameters A and S, an incompressible public key
encryption scheme with message space {0, 1}* and ciphertext space {0, 1}*< is a tuple of

PPT algorithms IT = (Gen, Enc, Dec).

Remark s.3.1. For the original disappearing PKE defined in", it is additionally required
that Gen, Enc, and Dec can be run in space N < L. Here, we will consider schemes that have

both large and small space.

142

The rest of the syntax of an incompressible PKE scheme is identical to that of a classical
PKE scheme. The “rate” of the PKE scheme is simply Z,, /L.

For the security definition, consider the following indistinguishability experiment for an

adversary A = (A, A,):

Incompressible Encryption Security Experiment Dist/}5"™"(\):
1. The adversary A;, on input 1, outputs a space bound 15.
2. Run Gen(1*,15) to obtain keys (pk, sk).
3. Sample a uniform bit 4 € {0,1}.
4. The adversary is then provided the public key pk and submits an auxiliary input aux.

5. The adversary replies with the challenge query consisting of two messages 72y and ;,

receives ct <— Enc(pk, m,).
6. A; produces a state st of size at most S.

7. Theadversary A, is given the tuple (pk, sk, aux, st) and outputsaguess &' for b. If &' =
b, we say that the adversary succeeds and the output of the experiment is 1. Otherwise,

the experiment outputs 0.

Definition s.3.1 (Incompressible Encryption Security). For security parameters X and S, a
public key encryption scheme I1 = (Gen, Enc, Dec) has incompressible encryption security if
for all PPT adversaries A = (A, A,):

Pr [DistiﬂfﬁmE”C(A) =1] < = + negl(N).

N =

143

Notice that allowing the adversary to submit and later receive the auxiliary input aux is
equivalent to allowing A;, A, to just have shared randomness at the beginning of the exper-
iment and that, in the non-uniform setting, the definition would be the same without aux

since A;, A, are deterministic w.l.o.g.

Remark s.3.2. The original Disappearing Ciphertext Security® has a very similar security
notion, except that the adversary bas a space bound of S throughout the entire experiment, and
that the ciphertext is a long stream sent bit by bit. Notice that our definition of Incompress-
tble Encryption Security is a strictly stronger security definition than Disappearing Ciphertext

Security.

5.3.2 CONSTRUCTION

Construction s.3.1. Given FE = (Setup, KeyGen, Enc, Dec) single-key selectively secure
functional encryption scheme with a rate of pre and a strong average min-entropy extractor
Extract : {0,1}" x {0,1}¥ — {0,1}t, withd = poly(\) and n = S + poly(\) the

construction I1 = (Gen, Enc, Dec) works as follows:

* Gen(1*,15): First, obtain (FE.mpk, FE.msk) <« FE.Setup(1*). Then, generate the

secret key for the following function f, with a hardcoded v € {0,1}4 .

k4 ifflag =0
fulsd' = (s,7), flag) = :
S@v ifflag=1

Output pk = FE.mpk and sk = FE.sk;, < FE.KeyGen(FE.msk, f,).

* Enc(pk, m): Sample a random tuple s = (s,t) wheres € {0,1} is used as a seed

144

for the extractor and t € {0,1} is used as a one-time pad. The ciphertext consists of
three parts: FE.ct <— FE.Enc(FE.mpk, (s/,0)), 2 long randomness R € {0,1}", and

z = Extract(R;s) ® t ® m.

* Dec(sk,ct = (FE.ct, R, 2)): First, obtain s <— FE.Dec(FE.sky,, FE.ct), and then use

the seed s to compute Extract(R;s) @ z & t to recover m.

Note that if Extract is an on/ine extractor ”*, then encryption and decryption can be run
in a low-space streaming fashion, by first sending FE.ct, then streaming R, and then sending

2. The rate of this construction is

o(1).

-1
=1L, +n+L,| = -
PFE) (1/pre +1) +S/L,,

L d+ L, +1 1
—Lct

Theorem s.3.1. Assuming the existence of a functional encryption scheme with single-key selec-
tive security and a rate of 1/poly (), and a (poly(X), negl(\)) average min-entropy extractor,
there exists an incompressible PKE with ciphertext size S4-L,,+poly(X)+poly (X)L, public key
size poly () and secret key size poly(X). It supports streaming decryption using L,, + poly(X)

bits of memory.
5.3.3 PROOF OF SECURITY
We organize our proof of security into a sequence of hybrids.

SEQUENCE OF HYBRIDS

* Hy: The original incompressible encryption security experiment Dist'jcﬁmE"C, where

the bit & in the experiment is fixed to be 0.

145

* H;: In step s, instead of computing FE.ct <— FE.Enc(FE.mpk, (s/,0)), compute
FE.ct «+ FE.Enc(FE.mpk, (s @ v,1)).

* H,: In step 2, only sample (FE.mpk, FE.msk) «— FE.Setup(1*). In step s, after re-
ceiving the challenge query, sample uniformly random z € {0, 1}/, # € {0, 1}47,
R € {0,1}" and send back FE.ct <~ FE.Enc(FE.mpk, (#,1)), R, and as the cipher-
text. Instep 7, sample a uniformly randoms € {0,1}%,and computes = Extract(R;s)®

z®myg, andv = ' ©u wheres' is the tuple (s, £). Use this v to compute sk = FE.skg, <

FE.KeyGen(FE.msk, £,).

* Hj: In step 7, sample a uniformly random » € {0, 1}*” and compute r = »® z B my

instead.
* Hj: Swap the bit 4 in the security experiment to be 1 instead of 0.
* Hs: Switch back to the case where r = Extract(R;s) @ z © my.
* Hg: Switch back to the case where we produce sk in step 2 instead of step s.

* H;: Switch the FE ciphertext back to the real one FE.Enc(FE.mpk, (s/,0)). Notice
here we’re at the original incompressible encryption security experiment, where the

bit & is fixed to be 1.

ProoF oF HYBRID ARGUMENTS

Lemma s.3.1. If the functional encryption scheme FE bas single-key selective security, then
no PPT adversary can distinguish between Hy and H, (respectively Hq and H) with non-

negligible probability.

Proof. Here we will prove the case for Hy and H;. The case for Hs and H; follows analo-
gously. This is by a simple reduction to the single-key selective security of the functional
encryption scheme. If an adversary A is able to distinguish between H, and H;, we show
how to construct an adversary A’ that breaks security of the functional encryption scheme
FE. The only difference between Hj and H; is that in Hj the adversary receives an encryp-
tion of (s, 0), while in H; the adversary receives an encryption of (s @ v, 1). But notice that
fo(5,0) = = f,(s @ 0,1), so the adversary A is able to distinguish between two FE ci-
phertexts that have the same functional output on function f,, for which it has a secret key.
This directly breaks the underlying functional encryption security. Concretely, A’ works as

follows by using A = (Aj;, A,) as a subroutine:

* Oninput1*, sample uniform values s’ and v, and submit the challenge query FE.mq =
(¢,0) and FE.m; = (¥ @ v,1) to the challenger. Receive FE.mpk and FE.ct in re-

sponse.
* Send 1* to A, and receive 1°.

* Send FE.mpk to A, receive aux and the challenge query 2 and m;, and respond
with FE.ct, R and 2z, where R is a random string of length S + poly()), and z =
Extract(R;s) @ ¢ @ my. The adversary A; produces a state st. Notice that the only
component that’s different for Hy and H; is FE.ct, and it does not depend on the

challenge query from A;. R and z remain unchanged.

* Send f, to the challenger and receive FE.skg. Forward sk = FE.skj to A, together

with (FE.mpk, aux, st).
* If A, outputs that it is in Hp, output 0. Otherwise, output 1.

147

It is straightforward to verify that if A wins the game, A’ wins as well. O

Lemma s.3.2. Noadversary can distinguish between Hy and H, (respectively Hs and H,) with

non-negligible probability.

Proof. We prove the case for H; and H>, the case for Hs and H follows analogously. Since
pk does not depend on sk, and sk is not used until in step 7, now instead of fixing £, (and
thus sk = FE.sky) in step 2, we sample it lazily in step 7. Our new sampling procedure in /7,
makes the following two changes to H: First, in /,, we sample a uniform 7 and compute z =
Extract(R; s) @ my, while in A, we sample a uniform zand compute r = Extract(R;s)&®
2 @ my. This is just a change of variables, and gives two identical distributions. Second, in
H,; we sample a uniform v and encrypt # = v @ s, while in A, we encrypt a uniform #
and compute v = # @ 5. Again, these are identical distributions. Thus, no adversary can

distinguish between A, and H, with non-negligible probability. O

Lemma s.3.3. If the extractor Extract is a (poly(\), negl(\)) average min-entropy extractor,
then no adversary that produces a state st of size at most S can distinguish between H, and H;

(resp. Hy and Hs) with non-negligible probability.

Proof. We prove the case for H, and H3. The other case follows naturally.
Here let the random variables X = R, and ¥ = (FE.mpk, FE.msk, aux, #,z) and Z =

st. By Lemma 2.1.1, we have
Hy(X|Y,Z) > min Ho(X|Y = y,Z) > min Hy (X]Y = y) — S = poly(N).
y b

The last equality above follows since X = R is a uniformly random string, independent of ¥,

oflength S+poly(\). By extractor security, no adversary can distinguish (s, Extract(R;), ¥, Z)

148

from (s, Uy,,, Y, Z) except with negl(\) probability. Since we now sample # <— Uy, , no ad-
versary can now distinguish between # = Extract(R;s) @ z @ mo and t = u & z B my, i.c.

H, and H;.]
Lemma s.3.4. No adversary can distinguish Hs from H, with non-gero probability.

Proof. Notice that the only difference between A3 and Hy is thatin A3 we have t = r&zDmy
while in H, we have t = r@z®m;, where ris uniformly random. Thus #is uniformly random

in both cases, and A5 and H, are identical.]

Theorem s.3.2. IfFE is a functional encryption scheme with single-key selective security, and
Extract is a (poly(X), negl(X)) average min-entropy extractor, then Construction §.3.1 has

incompressible encryption security.

Proof. Thelemmas above show a sequence of hybrids where no PPT adversary that produces
a state with size at most S can distinguish one from the next with non-negligible probabil-
ity. The first hybrid Hj corresponds to the incompressible encryption security game where
b = 0, and the last one H corresponds to the case where & = 1. The security of the indistin-

guishability game follows.]

5.3.4 INSTANTIATING OURFE

We now give a simple construction of functional encryption for our needed functionality.

Recall that our functions f, have the form £, (s, flag) = s & (flag - v).

Construction s.3.2. Let (Gen', Enc’, Dec') be a public key encryption scheme. Our scheme

FE = (Setup, KeyGen, Enc, Dec) for message length n + 1 s defined as:

149

Setup(1*): Fori € {1,...,n},b € {0,1}, run (pk,,,sk;s) < Gen'(1*). Ontput

(mpk = (pkz',b)z',b) msk = (Skl’,b)l}”'

KeyGen(msk, £;) = (sk;,,):.

Enc(mpk, (s, flag)): Fori € {1,...,n},b € {0,1}, compute c;;, = Enc'(pk,,, 5 &

(flag - &)). Output c = (c;4): 4

Dec(sky,, c): Output x = x1x, - - - x, where x; = Dec’(sky;, ivy)

For correctness, note thatx; = s;& (flag-v;), and thereforex = s& (flag-v) = £, (s, flag).
Note that the rate of this scheme is 1/poly(\). Thus the overall rate of our incompressible

encryption scheme is 1/poly(\).

Theorem s.3.3. If (Gen', Enc’, Dec’) isa CPA secure public key encryption scheme, then Con-

struction 5.3.2 is single key semi-adaptively secure for the functions f,.

Proof. Consider a single key semi-adaptive adversary for Construction s.3.2. Let my =
(50, flagy), m1 = (51, flag,) be the challenge messages. For a fixed flag bit, £, is injective.
Therefore, if my # my, it must be that flag, # flag;. Then if the adversary’s secret key
query is on f,, we must have v = 5o @ 5. Thus the two possibilities for the challenge ci-
phertext are the same for ¢;,,, but encrypt opposite bits in ¢;;—,,. Since the adversary never
gets to see the secret keys sk;;_,,, a simple hybrid argument shows that flipping these bits is

indistinguishable.]

Corollary s.3.1. Assuming the existence of a CPA secure public key encryption scheme and
a (poly(A), negl(\)) average min-entropy extractor, there exists an incompressible PKE with
ciphertext size S + L, + poly(X) + poly(X)L,,, public key size poly(\) and secret key size

poly(X). Furthermore, it supports streaming decryption using L,, + poly(\) bits of memory.

150

5.4 RATE-1 INCOMPRESSIBLE ENCRYPTION

Here, we construct incompressible encryption with an optimal rate of 1 — o(1), i.e. the mes-

sage length is (almost) the same as the ciphertext length.

5.4.1 CONSTRUCTION

For our construction, we require a functional encryption scheme with single-key semi-adaptive
security and a rate of 1, a strong average min-entropy extractor, and a secure pseudorandom

generator (PRG). Our construction works as follows.

Construction s.4.1. Given FE = (Setup, KeyGen, Enc, Dec) 4 rate-1 functional encryp-
tion scheme satisfying single-key semi-adaptive security, Extract : {0,1} x {0,1}4 —
{0, 1}" a strong average min-entropy extractor where d, n = poly(X), and PRG : {0,1}" —

{0,1}1 4 secure PRG, the construction I1 = (Gen, Enc, Dec) works as follows:

 Gen(1*,15): First, obtain (FE.mpk, FE.msk) < FE.Setup(1}). Then, generate the
secret key for the following function f, , with a hardcoded large random pad v € {0,1}

and a small extractor seed s € {0,1}%:

X ifflag =10
fos(x,flag) = :
PRG(Extract(x;s)) ®v ifflag =1

Output pk = FE.mpk and sk = FE.sk; < FE.KeyGen(FE.msk,f,,). Set L,, =

S+ poly ().

* Enc(pk, m): The ciphertext is simply an encryption of (m,0) using the underlying FE
scheme, i.e. FE.ct <— FE.Enc(FE.mpk, (m,0)).

* Dec(sk, ct): Decryption corresponds to FE decryption. The output is FE.Dec(FE.sk;, ,

ct) = fo.s(m,0) = m as desired.

Let pre be the rate of FE. Then the ciphertext size is (Z,, + 1)/pre and the rate of our
incompressible encryption scheme is pi = pre/(1 + L,'). If pre = 1 — o(1), then py; =

1 — o(1) as well.

Theorem 5.4.1. Assuming the existence of a functional encryption scheme with single-key semi-
adaptive security and a rate of 1 — o(1), and a (poly(X), negl(X)) average min-entropy extrac-
tor, there exists an incompressible PKE with message size of up to S — poly(\), ciphertext size

S + poly(X), public key size poly(\) and secret key size poly(S, A).

5.4.2 PROOF OF SECURITY

We organize our proof of security into a sequence of hybrids.

SEQUENCE OF HYBRIDS

* H,: The original incompressible encryption security experiment Dist'35y™=", where

the bit & in the experiment is fixed to be 0.

* H;: Instead of fixing v and s in step 2 of the security experiment, lazily sample v and s
in step 7 where we need to provide sk. Also, instead of sampling v directly, first sample

a uniformly random # € {0, 1}*”, and then compute v = # & my.

H,: We further modify how we sample v. Now instead of sampling a random #, we

sample a random PRG key £ € {0,1}”, and set v = PRG(k) & m,.

Hj: We once more modify how we sample v. We now sample a long randomness R €

{0, 1}* and use that to compute v = PRG(Extract(R;s)) & my.

H,: In step s, set the ciphertext to be FE.ct <— FE.Enc(FE.mpk, (R, 1)).

Hs: In step 7, revert to computing v = PRG(k) @ m for a uniform 4.

Hg: In step 7, revert to computing v = # & m for a uniform #.

H: Switch the bit 4 of the experiment from 0 to 1.

Hj: In step 7, sample v as PRG(k) @ m;.

Hy: In step 7, sample v as PRG(Extract(R;s)) & m;.

H,o: In step s, change the ciphertext back to FE.ct <— FE.Enc(FE.mpk, (4, 0)).
Hy;: In step 7, sample v as PRG(k) @ m;.

H;: In step 7, sample v as u @ m;.

Hi5: Sample a uniform v back at the beginning of the experiment in step 2. Notice that

now we’re back at the original incompressible encryption security experiment, where

the bit 4 is fixed to be 1.

I53

ProoF oF HYBRID ARGUMENTS

Lemma 5.4.1. No adversary can distinguish between Hy and H, (respectively Hy, and Hys)

with non-negligible probability.

Proof. We prove the case for Hy and H;. The case for H;, and Hi; follows analogously. Notice
that pk does not depend on sk, and sk is the only value that depends on v and s, but it is not
used until in step 7. So we can sample v and s lazily in step 7 instead of fixing it as early as in
step 2.

Sampling a uniformly random # and XORing it with 7z, is equivalent to using # as a one-

time pad. By the statistical security of OTP, Hy and Hj are also statistically indistinguishable.

O

Lemma s.4.2. If the underlying PRG is a secure pseudorandom generator, then no PPT ad-
versary can distinguish between Hy, and H, (as well as Hs and He, H; and Hg, Hyy and H,,)

with non-negligible probability.

Proof. Here we prove the case for H; and H>. The other three cases follow naturally. In H;,
we have v = u @ m, with uniformly random #, and in H,, we have v = PRG(k) & m, with
a uniformly random PRG key £. Since the key £ is random and not used anywhere else, by
PRG security, the PRG output should be computationally indistinguishable from a uniform

distribution. This directly completes the proof. O

Lemma s.4.3. If the underlying Extract is a (L,,, negl(\)) average min-entropy extractor,
then no adversary can distinguish between H, and Hs (respectively Hyy and Hy,) with non-

negligible probability.

154

Proof. We prove the case for H, and Hs. The other case follows.

The randomness R is freshly sampled and not used anywhere else, and hence have full
L,, average min-entropy conditioned on the other variables. Therefore, we can easily invoke
the extractor security and that gives us Extract(R; s) is statistically close to a uniform £, and

hence also H, and Hj. []

Lemma s.4.4. If the underlying FE is a functional encryption scheme with single-key semi-
adaptive game-based security, then no PPT adversary can distinguish between Hy and H (re-

spectively Hy and Hy) with non-negligible probability.

Proof. We will prove the case for A3 and H,. The other one follows analogously. Notice
that the only difference between A3 and Hj is the message being encrypted by the underlying
FE scheme. In A3, we use the FE scheme to encrypt (2, 0), while in Hj, we encrypt (R, 1).

Notice that

fos(R, 1) = PRG(Extract(R;s)) @& PRG(Extract(R;s)) & m = m = f,,(m,0).

So we have two ciphertexts with the same functionality under the function £, ;. By the
single-key semi-adaptive security of the FE scheme, they should be computationally indistin-
guishable.

More concretely, assume that there exists an adversary A = (A;, A,) that distinguishes
between H; and H, we show how to construct an adversary A’ that wins the semi-adaptive

security game of the FE scheme. By using A as a subroutine, A’ works as follows:

e Receive 1" and FE.mpk from the challenger, send 1* to Aj, receive 15 and set L,, =

S+ poly(X).

IS5

* Send FE.mpk to A; and receive aux and the challenge query m2 and m,.

* Sample a uniformly random R € {0, 1}*, and submit the challenge query FE.m, =
(mq,0) and FE.m; = (R, 1) to the challenger. Receive FE.ct in response and forward

itto A;. A produces a state st.

* Sample random seed s € {0, 1}, compute v = PRG(Extract(R;s)) & my, and send
fos to the challenger. Receive in response FE sk, , and forward it to A, together with

(FE.mpk, aux, st).
* If A, outputs that it is in /3, output 0. Otherwise, output 1.
It should be easy to verify that if A wins, A’ also wins. O

Lemma s.4.5. Ifthe underlying Extract isa (poly(\), negl(\)) average min-entropy extrac-
tor, then no adversary that uses a state of size at most S can distinguish between Hy and Hs

(respectively Hg and Ho) with non-negligible probability.

Proof. Here we prove the case for A4 and Hs. The other case follows analogously.
Here let the random variables X = R, and ¥ = (FE.mpk, FE.msk, aux) and Z = st. By

Lemma 2.1.1, we have
Ho(X|Y,Z) > min Ho (X|Y = y,Z) > min Hoo(X|Y = y) — S = poly(}\).
y y

The last equation follows from that X = R is a uniformly random string of length Z,, =

S+poly (). Therefore, by extractor security, no adversary can distinguish (s, Extract(R;s), ¥, Z)

from (s, U,, Y, Z) except with negl(\) probability. And since we now sample £ <— U, no ad-
versary can now distinguish between v = PRG(Extract(R; s)) & mo and v = PRG(k) & m,
i.e. Hy and Hs. [

Lemma 5.4.6. No adversary can distinguish between Hg and H; with non-negligible proba-

bility.

Proof. The only difference between Hy and H5 is that in H we have v = # @ m and in H;
we have v = # © my, where # is uniformly random. This is just a one time pad encryption
with a uniformly sampled key. By OTP security, H, and H are statistically indistinguishable.

O

Theorem s.4.2. If FE bas single-key semi-adaptive security, Extract s a (poly (), negl(\))
average min-entropy extractor, and PRG is a secure PRG, then Construction §.4.1 bas incom-

pressible encryption security.

Proof. The lemmas above show a sequence of a polynomial number of hybrid experiments
where no PPT adversary that produces a state with size at most.S can distinguish one from the
next with non-negligible probability. The first hybrid A, corresponds to the incompressible
encryption security game where & = 0, and the last one Hy; corresponds to the case where

b = 1. The security of the indistinguishability game follows.]

5.5 INCOMPRESSIBLE SIGNATURES: OUR Basic CONSTRUCTION

5.5.1 DEFINITION

Here we give the definition of zncompressible signatures. An incompressible signature scheme

IT = (Gen, Sign, Ver) takes an additional space parameter S, and in addition to the standard

157

model signature security (where the adversary has unbounded space throughout the game),

we also require incompressible signature security that utilizes the following experiment for ad-

versary A = (A;, Ay):
Signature Forgery Experiment Si gForgeiZfﬁmSig()\):
* The adversary A;, on input 1*, outputs a space bound 1°.
* Run Gen(1*,15) to obtain keys (vk, sk).
* The adversary A, is given the public key vk, and submits an auxiliary input aux.

* For g = poly(\) rounds, A; submits a message 7z, and receives o <— Sign(sk, 7). At

the end of the last round, A; produces a state st of size at most S.

* The adversary A, is given the public key vk, the state st, and the auxiliary input aux,

and outputs a signature o’. If Ver(vk, 0’) outputs L, output 0. Otherwise, output 1.

Notice that traditionally, we would require Ver(vk, ¢”) to be distinct from the messages
m’s queried before, but here we have no such requirement. Also, notice that allowing the ad-
versary to submit and later receive the auxiliary input aux is equivalent to allowing A;, A, to
just have shared randomness at the beginning of the experiment and that, in the non-uniform
setting, the definition would be the same without aux since A;, A, are deterministic w.l.o.g.
With this experiment in mind, we now define the additional security requirement for an in-

compressible signature scheme.

Definition s.5.1 (Incompressible Signature Security). For security parameters \ and S, an

incompressible signature scheme 11 = (Gen, Sig, Ver) has incompressible signature security, if

158

for all PPT adversaries A = (A, As):

Pr SigForgeﬁfﬁmSig(A) = 1] < negl(\).

5.5.2 CONSTRUCTION

We present a very simple construction from classical public key signature schemes.

Construction s.5.1. Let \, S be security parameters. Given Sig = (Gen, Sign, Ver) a clas-
sical public key signature scheme with message space {0, 1} where n = S + poly(\) and

rate p', we construct an incompressible signature scheme 11 = (Gen, Sign, Ver) as follows:

 Gen(1*,1%): Run Sig.Gen(1*) to obtain (Sig.vk, Sig.sk). Output vk = Sig.vk and

sk = Sig.sk.
* Sign(sk, m): Sample randomness R € {0,1}”, and output o < Sig.Sign(Sig.sk, (R, m)).

* Ver(vk,o): Run M < SigNVer(Sig.vk, o). If M = L, outpur 1. Otherwise, if

M = (R, m), output m.

Sig can be computed in an low-space streaming fashion, since we can hash the message
in low space first using Merkle-Damgard. Then Construction 5.6.1 can readily be computed

with low space streaming. The rate of this construction is

= S/L)

159

5.5.3 PROOF OF SECURITY

Theorem s.5.1. Assuming the existence of a secure public key signature scheme with rate p/,
there exists an incompressible signature scheme with signature size p' (S+ L,, 4 poly (X)), public
key size poly(\) and secret key size poly(\). Furthermore, it supports streaming computation

using poly(\) bits of memory.

Proof. We show this through a reduction proof. Concretely, we show how one can use an
adversary A = (Ay, A,) that breaks the incompressible signature security as a subroutine to
build an adversary A’ the breaks the underlying classical Sig scheme. The adversary A’ works

as follows:

Send 1* to Ay, receive 15, and set 2 = S + poly ().

Receive vk from the challenger, forward it to \A;, and receive aux from A;.

* For each signing query 7, made by A;, sample a random R, € {0,1}” and make a

query (R;, m;) to the challenger. Receive back o, and forward it directly to .A;.

When A, produces a state st, send vk, st and aux to .A,. Output what A, outputs as

o'.

Notice that if A wins, that means Ver(vk,o’) = (R',m') # L. If m' & {m;},, then

R’, m') is a pair not queried before by A’, and thus A’ wins the game. If m' = m, for some
P q y & j

J» then we argue that with overwhelming probability R" # R, and hence A’ wins as well.

Indeed this is true since

Hoo(R)|st, vk, {m;};) > S+ poly(\) — S = poly(}).

160

Therefore R; is unpredictable conditioned on A,’s view, so the probability of A, producing

some R/ = R;is negligible. O

5.6 RATE-1 INCOMPRESSIBLE SIGNATURES

5.6.1 INCOMPRESSIBLE ENCODING

Moran and Wichs™ give the definition for incompressible encodings and show construc-
tion based on either the Decisional Composite Residuosity (DCR) or Learning With Errors
(LWE) assumptions, in either the random oracle model or the CRS model. We modify the

definition slightly to better accommodate the syntax in this chapter.

Definition 5.6.1 (Incompressible Encodings ™). Let X be security parameters. An incompress-
ible encoding scheme for message space {0, 1} and codeword space {0,1}" is a pair of PPT

algorithms Code = (Enc, Dec) that utilizes the following syntax:

* Enc(1*, m) — con input the security parameter and a message, outputs a codeword c.

* Dec(c) = m on input a codeword, outputs the decoded message m.

The “rate” of the incompressible encoding is L, /L,.”

We additionally require correctness and S-incompressibility':

Definition 5.6.2 (Correctness). Forall \ € N and m € M, Pr|Dec(Enc(1*,m)) = m] >

1 — negl(\).
Next, consider the following experiment for adversary A = (A;, A,):

Codeword Compression Experiment Compﬁfgg"d?de()\, S):

“This is equivalent to the a-expansion property as defined in”” for o« = L./ L,,.
"This is equivalent to S-incompressibility as defined in " for § = S.

161

* Oninput 1*, the adversary A, submits a message 7 and auxiliary input aux. It receives

¢ < Enc(1*, m), and produces a state st of size at most S.

* The adversary A, is given the state st, the message 72, and the auxiliary information

aux; it produces a codeword ¢’. Output 1 if and only if ¢ = c.

Definition 5.6.3 (S-Incompressibility). Forsecurity parameter \, we require that for all PPT

adversary A = (A, Ay):
Pr [Compiﬂf@&i"de()\,S) =1] < negl()).

5.6.2 CONSTRUCTION

Now we show how we modify Construction s.5.1 to get an incompressible signature scheme
with a rate of 1. Essentially we can think of the procedure of attaching a long random string
in Construction s.5.1 as a form of an incompressible encoding with a poor rate. Here we just

need to replace it with an incompressible encoding with a rate of 1.

Construction 5.6.1. Let \, S be security parameters. Given Sig = (Gen, Sign, Ver) a classi-
cal signature scheme with rate 1, and Code = (Enc, Dec) an incompressible encoding scheme

with rate1 and S-incompressibility, we construct an incompressible signature schemell = (Gen,

Sign, Ver) as follows:

* Gen(1*,1%): Run Sig.Gen(1*) to obtain (Sig.vk, Sig.sk). Output vk = Sig.vk and
sk = Sig.sk.

* Sign(sk,m): First compute the codeword ¢ <+ Code.Enc(1*, m), and then compute

o < Sig.Sign(Sig.sk, ¢).

162

* Ver(vk,o): Run ¢ < Sig.Ver(Sig.vk, o). If ¢ = L, outpur 1. Otherwise, output

m < Code.Dec(c).

The rate of our scheme is the product of the rates of the incompressible encoding and
standard-model signature scheme. We can construct a classical signature scheme with rate
1 — 0(1) from any one-way function by hashing the message using a universal one-way hash
function, and then signing the hash value. Our incompressible signatures therefore have rate

1 — 0(1), in the CRS or random oracle model.

Theorem 5.6.1. Assuming the existence of a secure public key signature scheme with rate 1 —
0(1) and an incompressible encoding scheme [in the CRS/RO model] with rate 1 — o(1), there
exists an incompressible signature scheme [in the CRS/RO model] with rate 1 — o(1), public
key size poly(\) and secret key size poly(N). Furthermore, it supports streaming computation
using poly () bits of memory, assuming that the incompressible encoding scheme does as well
[either in the random oracle model, or with the streaming of the CRS in the CRS model]. If the
incompressible encoding scheme in the CRS model is only selectively secure, then so is the resulting

incompressible signature scheme.

Proof. Assume towards contradiction that there exists an adversary A = (A;, A,) that wins
the incompressible signature game. Let {#2,}, be the message queries made by A, {0}, the
responses, and {¢; = Sig.Ver(vk, 0;) };. Let 0’ be A,’s forgery, and ¢ = Sig.Ver(vk, o').
Let p be the probability that A wins and ¢ ¢ {c;};. The security of the standard-model
signature scheme immediately implies that p is negligible: simply devise a new adversary A’
that is the same as 4, except that it encodes every message 2, into ¢; <— Code.Enc(1*, m;)

before making a signing query.

Let 7 be the probability that A wins and ¢ € {¢;}. The security of the incompressible
encoding implies that 7 is negligible: we construct a new adversary A” which sets up the
standard-model signature for itself and simulates the entire view of \A. The exception is that
it guesses a random 7*, and forwards the ;- as it’s challenge message; when it receives ¢,
from the encoding challenge, it computes - <— Sig.Sign(sk, ¢;). With probability /4,
this adversary is able to reproduce ¢;+, despite compressing it. Here, ¢ is the number of queries
made.

We therefore have that A wins with probability p + 7, which is negligible.]

5.6.3 EQUIVALENCE TO INCOMPRESSIBLE ENCODING

Lastly, we quickly show that incompressible signatures are equivalent to incompressible en-
codings (plus one-way functions) by showing how to construct an incompressible encoding

scheme from an incompressible signature scheme.

Construction 5.6.2. Let \ be a security parameter. Given Sig = (Gen, Sign, Ver) an incom-
pressible signature scheme with rate 1 and small verification keys, we construct an incompressible

encoding scheme I1 = (Enc, Dec, Ver) as follows:

* Enc(1*, m): Sample (Sig.vk, Sig.sk) « Sig.Gen(1*,15), and then compute o <

Sig.Sign(Sig.sk, m). Output c = (Sig.vk, o).
* Dec(c = (Sig.vk, 0)): Simply output m < Sig.Ver(Sig.vk, o).

The codeword length is the signature length (equal to message length if Sig has rate 1)

plus the length of the verification length. Hence the rate is 1 if the verification keys are short.

Correctness follows directly from the correctness of the signature scheme. Security also fol-
lows directly: if an adversary using a state st of size at most S'is able to produce ¢ = ¢, then
it has also produced a valid signature o and hence wins the incompressible signature security
game. Therefore, by Construction 5.6.1 and 5.6.2, incompressible signatures and incom-

pressible encodings (plus one-way functions) are equivalent.

5.7 CONSTRUCTING RATE-1 FUNCTIONAL ENCRYPTION

Here, we build rate-1 functional encryption (FE). For our application, we only need one
key security. However, our construction satisfies many-key security, though we need indis-
tingishability obfuscation (iO). We leave it as an open question whether such high-rate single
key FE can be built from standard tools.

Our construction is based on the techniques of Boneh and Zhandry*', who build from
iO something called private linear broadcast encryption, which is a special case of general FE.
A number of issues arise in generalizing their construction to general functions, which we

demonstrate how to handle.

5.7.1 BuIlLDING BLocks

Definition s.7.1 (Indistinguishability Obfuscation”). 47 indistinguiability obfuscator 7O

for a circuit dlass {C\} is a PPT uniform algorithm satisfying the following conditions:

* Functionality: Forany C € Cy, then with probability 1 over the choice of C' < iO (1%, C),
C(x) = C(x) for all inputs x.

* Security: For all pairs of PPT adversaries (S, D), if there exists a negligible function o

such that
Pr[Vx, Co(x) = Ci(x) : (Co, Cr,0) <~ S(A)] >1—a(N)
then there exists a negligible function 3 such that

| Pr[D(0,iO(), Cy)) = 1] — Pr[D(0,iO(X, Gy)) = 1]| < B(N)

When C), is the class of all polynomial-size circuits, we simply call /O an indistinguishabil-

ity obfuscator. There are several known ways to construct indistinguishability obfuscation:
* Gargetal.”” build the first candidate obfuscation from cryptographic multilinear maps.
* Provably from novel strong circularity assumptions**° "

* Provably from “standard” assumptions”’: (sub-exponentially secure) LWE, LPN over

fields, bilinear maps, and constant-locality PRGs

Definition 5.7.2 (Puncturable PRF*>">**). 4 puncturable PRF with domain X and range

Yy is a pair (Gen, Punc) where:
* Gen(1%) outputs an cfficiently computable function PRF : Xy — V)

* Punc(PRF, x) takes as input a function PRF and an input x € X\, and outputs a

“punctured” function PR F~.

166

* Correctness: With probability 1 over the choice of PRF < Gen(1%),

PRF(x') ifx #«x
PRF () = @) g7
1 ifx =x

* Security: Forall x € X\, (PRF*, PRF(x)) is computationally indistinguishable from
(PRF¥,), where PRF < Gen(1*) and y +— Y.

Such puncturable PRFs can be built from any one-way function

We now give a new definition of a type of signature scheme with a single-point binding
(SPB) property. This allows, given a message 7z, for generating a fake verification key together
with a signature on 7. The fake verification key and signature should be indistinguishable
from the honest case. Yet there are no signatures on messages other than relative to the
fake verification key.*" implicitly constructs such signatures from iO and one-way functions,
but with a logarithmic message space, which was good enough for their special-purpose FE
scheme. In our case, we need to handle very large exponential message spaces. The problem
with*"’s approach is that the security loss is proportional to the message space; to compensate
requires assuming (sub)exponential hardness, and also setting the security parameter to be
larger than the message length. This results in the signature size being polynomial in the
message size, resulting in a low-rate FE scheme. SPB signatures avoid the exponential loss, so

we can keep the security parameter small, resulting in a rate-1 FE scheme.

Definition s.7.3. A4 single-point binding (SPB) signature is 2 guadruple of algorithms (Gen,
Sign, Ver, GenBind) where Gen, Sign, Ver satisfy the usual properties of a signature scheme.

Additionally, we have the following:

* (vk,0) < GenBind(1*, m) takes as input a message m, and produces a verification key

vk and signature o.

s For any messages m and with overwhelming probability over the choice of (vk, o) <
GenBind(1*, m), Ver(vk, o') € {m, L} forany o’. That is, there is no message m' #

m such that there is a valid signature of m' relative ro vk.

* Foranym, GenBind(1*, m) and (vk, Sign(sk, m)) are indistinguishable, where (vk, sk) <
Gen(1*). Note that this property implies that Ner(vk, o) accepts and output m, when

(vk, o) < GenBind(1*, m).
We explain how to construct SPB signatures in Section s.7.3, either from leveled FHE

(and hence LWE), or from iO and one-way functions.

OUR RATE-1 FE SCHEME. 'We now give our rate-1 FE scheme:

Construction s.7.1. LetiO bean indistinguishability obfuscator, Gen bea PRF, (Gen', Sig, Ver)

a signature scheme, and PRG : {0,1}* — {0,1}**,PRG’ : {0,1}* — {0,1}*" be a PRG.

* Setup(1*): Sample PRF <+ Gen(1*). Set msk = PRF and mpk = i/O(1*, Pgn),

where Penc is the program given in Figure §.1.

* KeyGen(msk, f): output skp < iO@1*, Ppec), where Ppec s is the program given in

Figure s.2.

* Enc(mpk, m): Choose a random r, and evaluate (t,v) < mpk(r). Then parsev =
(w,u). Setc = PRG (w) & m. Next run (vk,sk) < Gen'(1%;u), using u as the

random coins for Gen'. Compute o < Sign(sk, c). Output (¢,0).

168

* Dec(skp, (£,0)) = skz, o)

Figure 5.2: The program PDec,f

Figure 5.1: The program Pgpc.
Inputs: ¢, 0

Inputs: » Constants: PRF
Constants: PRF
1. (w,u) < PRF(?)
1. t < PRG(7).
2. (vk,sk) < Gen'(1*;).
2. v < PRF(z).
3. ¢ < Ver(vk, o). If ¢ = L, abort and output L.

3. Output (¢, 0).

4. Output fAPRG' (w) @ ¢).

Correctness follows immediately from the correctness of the various components. No-
tice that the ciphertext size is L,, + poly()), provided the signature scheme outputs short
signatures. Therefore, construction s5.7.1 has rate 1 — o(1).

Provided the random coins for (Gen’, Sign, Ver) are independent of the message length,
Penc has size poly()), independent of the message length. If Gen’, Sign can be evaluated in a

low-space streaming fashion, then so can Enc.
5.7.2 PROOF OF SECURITY

SEQUENCE OF HYBRIDS

* Hy: This is the FE security experiment, where the bit 4 in the experiment is fixed to
be o. Note that in this hybrid, the challenge ciphertext is generated as (¢*, 0*), where
7+ {0,1}A, £ < PRG(#), (w*, u*) < PRF(#*),x* < PRG'(w*),c* < x* ® my,

(vk*,sk*) «— Gen'(1*; #*),and o* < Sign(sk™, ¢*).

* Hi: Thisisidentical to H), except that we now generate #* uniformly at random: ¢* <—

{0,1}?.

* H,: This is the same as /), except that we change the way we generate mpk, sky. First
compute PRF” < Punc(PRF,), (w*,«*) < PRF(¢*). Then let (vk*,sk*) <«

Gen'(1*;4*) and x* = PRG(w*). We now compute mpk <+ 7O(1*, PE"°) and

Enc

answer secret key queries with sky <— iO(1*, P22°). Here, P’ and szff are the

programs in Figures 5.3 and 5.4

* H;: This is identical to H>, except that now we generate w*, #* uniformly at random,

instead of (w*, u*) <— PRF(#*).

* H,: Thisisidentical to H3 except that we now generate x* uniformly at random instead

of x* < PRG(w").
* Hs: This is identical to Hj, except for the following changes:

— We generate ¢* uniformly at random at the beginning of the experiment.

— After the challenge query, we generate x* = ¢* @ m,. Note that x* is the only

place 720 enters the experiment.
* Hj: This is identical to Hs, except now we generate (vk*, 0*) <— GenBind(1*, ¢*).

* H; through H,5: Hybrid H>, is identical to H,_,, except that m is replaced with 7.

Thus Hi; is the FE security experiment where & is fixed to be 1.

170

Inputs: m; »

Constants: PRF* | #

1. t < PRG(7). If# = ¢*, immediately abort and output L.

2. v+ PRF? (2).

3. Output (2,).

Figure 5.3: The program PE‘::C Differences from Pgpc highlighted in yellow.

Inputs: ¢, 0

Constants: PRF,” ,PRF, |, #,x*, vk*
1. Ifz# ¢, skip to Step 2. If # = #*, run ¢ <— Ver(vk™, 0);
if c = L, abort and output L, otherwise abort and output f{x* & ¢).
2. (w,u) < PRFT (2)
3. (vk,sk) < Gen'(1*;).
4. ¢ < Ver(vk,c,0). Ifc = L, abort and output L.

5. Output AAPRG(w) & ¢).

Figure 5.4: The program]%‘:} Differences from PEncf highlighted in yellow.

Proors or HYBRID STEPS

Lemma s.7.1. If PRG 75 a secure PRG, then no PPT adversary can distinguish between H,
and H, (respectively Hy, and H,s) except with negligible probability.

Proof. The only difference between the hybrids is how we generate #*; in Hj it is pseudoran-
dom and in A, it is uniformly random. Thus indistinguishability follows immediately from

the security of PRG. O]

171

Lemma s.7.2. IfiO is a secure indistinguishability obfuscator, then no PPT adversary can

distinguish between Hy and H, (respectively Hyy and Hy,) except with negligible probability.

Proof. Note that, with overwhelming probability, the uniformly random #* is not in the

sparse image of PRG. Thus, with overwhelming probability, the abort step in Pg:éc is never

triggered. Onallz # ¢, PRFand PRF” behave identically. Thus, Pgnc and PE‘:;C have identi-
cal functionalities. Thus their obfuscations are indistinguishable. Likewise, Ppec 5 on input
(¢*,¢,), would compute (vk, sk) < Gen’(1*; #*), which would exactly output (vk*, sk*).
Provided the signature accepted, it would output f{m) where m = PRG(w*) & ¢. Thus
Ppec pand Ppec rbehave identically on all inputs of this form. On inputs (¢,¢,0) witht # £,

the programs trivially behave identically. Thus they are identical on all inputs, and their ob-

fuscations are indistinguishable.]

Lemma s.7.3. If (Gen', Punc) is a secure puncturable PRE, then no PPT adversary can dis-

tinguish between Hy and H, (respectively Hyy and Hyy) except with negligible probability.

Proof. The only difterence between these hybrids is that w*, #* switch from being outputs of
PRF(#*) to being uniformly random. But since the rest of the experiment can be simulated

using only PRFF, security follows immediately from punctured PRF security. [l

Lemma s5.7.4. If PRG' 75 a secure PRG, then no PPT adversary can distinguish Hy and H,

(respectively Hy and Hy) except with negligible probability.

Proof. The only difference between the hybrids is that we switch from x* being pseudoran-
domly generated from a random w* to x* being uniform. Indistinguishability follows imme-

diately from the security of PRG'. O
Lemma s.7.5. Hy and Hs (respectively Hy and Hy) are identically distributed.

172

Proof. Since x* is uniform, so is ¢* = x* @ m;,. In both hybrids, we choose ¢* or x* randomly,

and solve for the other. Thus the distributions are identical.]

Lemma 5.7.6. If (Gen’, Sign, Ver, GenBind) 75 a secure SPB signature scheme, then no PPT
adversary can distinguish between Hs and Hy (respectively H; and Hy) except with negligible
probability.

Proof. Note that neither hybrid requires sk*, and the only difference is how we generate
vk*, o*: in Hs (respectively Hy) vk™ is generated from Gen’ using fresh random coins #* and
o* is the signature on ¢*, whereas in H; (respectively /), (vk*, o) is generated as GenBind (1%, ¢*).

Indistinguishability follows immediately from the security of the signature scheme.]

Lemma s.7.7. If iO is a secure indistinguishability obfuscator, then no PPT adversary can

distinguish between Hg and Hs.

Proof. The only difference between the two hybrids is whether x* = ¢*@mg orx* = ¢* ©my,
and the only place x* enters the experiment is in Pgt:c[’ Moreover, x* only affects the output
flx* @ ¢), and only in the event that the input (¢, ¢, o) satisfies # = £* and Ver(vk™, ¢, o)
accepts.

By the single-point binding of vk*, all inputs (£*, ¢, o) reject, except for ¢ = ¢*. Butin
the case ¢ = ¢*, we have that f{lx* @ ¢) = flm,). The FE security experiment guarantees that
flmy) = flmy). Thus the programs Pgt:é p have identical functionality in both hybrids, and

so their obfuscations are indistinguishable.]

Theorem s.7.1. IfiO isa secure indistinguishability obfuscator, PRG, PRG’ are secure PRGs,
(Gen', Sign, Ver, GenBind) isa secure SPB signature, and (Gen, Punc) is a secure puncturable

pseudorandom function, then Construction §.7.1 is a secure functional encryption scheme.

173

5.7.3 CONSTRUCTING SPB SIGNATURES

We now show how to construct single-point binding signatures.

A LOW-RATE CONSTRUCTION. We first describe a simple low-rate construction. This con-
struction is not good enough for our purposes, as our FE scheme inherits the rate of the
signature scheme. But we will later show how to compile any low-rate construction into a
high-rate construction.

Our construction is just Lamport one-time signatures, where the underling one-way func-

tion is replaced with a PRG:

Construction s5.7.2. Let PRG : {0,1}* — {0,1}** be a PRG. Then for a desired message

length n, our construction works as follows:

Gen(1Y): fori € {1,...,n},b € {0,1}, sample sk;;, + {0,1}* and set vk, =

PRG(SkZ-yg,). Outpm‘ (Vk = (Vk[ﬁ)@b , sk = (Skz‘,b>i,b)-

Sign(sk, m): output o = (m, (sk;,);)

Ver(vk, 0): Extract m from o. Foreachi € {1,...,n}, check that PRG(sk;,,) =

Pk, .- If all checks pass, ontput m. Otherwise output 1.

GenBind(1*, m): foreach i € {1,...,n}, sample sk;,,, < {0,1}* and set vk;,,, =
PRG(sk; .,). Thensamplevk;_,,, < {0, 1}2’\ uniformly. Output (Vk = (VK;);p , 0 =
(m, (skim):i))

In other words, to bind to a message, simply replace all the public key components that

do not correspond to the message with uniform randomness.

174

Binding follows from the fact that, with overwhelming probability vk;;_,, in binding
mode will have no pre-images. Since any message other than 7 must differ from m on some
bit 7, such messages will not have any signatures. Security follows immediately from the pseu-
dorandomness of PRG.

The problem with this signature scheme is that its rate is poor: the signature on a message

is a multiplicative poly(\) factor larger than the message itself

FROM LOW-RATE TO HIGH-RATE USING SPB HAsSHES. We now describe a new object, re-
lated to somewhere statistically binding (SSB) hashing ", which we call single-point binding

(SPB) hashing.

Definition §.7.4. A single-point binding (SPB) hash function #sa triple of algorithms (Gen, H,
GenBind) where:

* Gen(1*) produces a hashing key hk.
* H(hk, m) deterministically produces a hash b, with |b| < |m|.

* GenBind(1*, m*) takes as input a message m*, and produces a hashing key hk with the
property that, with overwhelming probability over the choice of hk <— GenBind (1, m*),
forany m # m*, H(hk, m) # H(hk, m*).

 For any message m*, (m*,Gen(1")) is computationally indistinguishable from

(m*, GenBind(1*, m*)).

We now use a SPB hash to improve the rate of an SPB signature. The construction is the

usual hash-and-sign signature scheme: to sign a message 7z, simply compute the signature

175

o < H(hk,m), and output (m, o). If the underlying signature is an SPB signature, then
GenBind for the new signature simply binds hk to 72, and then binds vk to H(hk, 7).
If H hashes to a size that is independent of the message, then the resulting signature has

rate 1, regardless of the rate of the original signature.

CONSTRUCTING SPB HASHING. It remains to construct an SPB hash function.

We first briefly note that such hash functions can be build from fully homomorphic en-
cryption (FHE), following essentially the same construction of somewhere statistically bind-
ing hashing from“". The hashing key is normally the encryption of a random string » of
length equal to the message. To hash a message 7, homomorphically compute an encryp-
tion of 4, the result of comparing 7 with 7. To bind the hashing key to 7z, simply encrypt
the message 7. FHE security immediately implies security. For binding, the message 7 will
then hash to an encryption of 1, whereas any other message will hash to an encryption of o.
By the correctness of the FHE scheme, encryptions of o0 and 1 must be disjoint.

Next, we explain how to get a construction from iO and one-way functions. Since we
are already using iO and one-way functions to build our FE scheme, these assumptions are

redundant.

Construction 5.7.3. Let iO be an indistinguishability obfuscator, Gen' the generation algo-

rithm for a PRE, and PRG a pseudorandom generator.

* Gen(1*): Sample PRF + Gen'(1*), and output hk = iO(1*, Prasn), where Pragn is

the program given in Figure s.5.

* H(hk, m) = hk(m)

* GenBind(1*, m*): Sample PRF < Gen'(1*), compute PRF"" < Punc(PRF, m*),
and choose a random string x*. Output hk = iO(1*, P22 where P23 is the program

tthash

given in Figure s.6.

Remark s.7.1. If we want our rate-1 incompressible encryption to have encryption be com-
putable in low space given a stream of m, then we need our rate-1 FE encryption to be likewise
be computable in low space given a message stream. This in turn means we need to be able to
evaluate H(hk, m) in low space given the message stream, and given the random coins used to
construct hk. We can always assume the random coins are small. In our construction, we cannot
compute hk gtself in low space, since it is a large obfuscated program. However, we can neverthe-
less compute H(hk, m) = PRG(PRF(m)) in low-space, provided PRF has small keys and can
be evalauted on a message stream in low space (the output of PRF is small, so PRG can easily
be computed once we have PRF (m). Most PRFs have this property, including the puncturable
PRF from one-way functions dueto’’. This gives us the desired rate-1 incompressible encryption

with low-space encryption.

Inputs: m
Constants: PRF

1. Output PRG(PRF(m))

Figure 5.5: The program Ppag.

For binding, note that the random x* outputted on input 7" is, with overwhelming
probability, outside the range of PRG. But all inputs 7 # m* must output points in the
range of PRG. Thus, there are no collisions with 7.

For security, use the following sequence of hybrids:

177

Inputs: m

Constants: PRF ™" | m*, x*

1. Ifm = m*, output x*. Otherwise,

2. Output PRG(PRF(m))

Figure 5.6: The program Pﬁgrs‘ﬁ Differences from Py,¢y, are highlighted in yellow.
* H: this is the case where hk < Gen(1%).

* Hi: here, we generate hk = /O(PPi53), except that x* is set to PRG(PRF(7*)). Note

ind

sooand Pyasy have

that this x* is exactly the output of Pyasn(72*). Hence in this case P

identical functionalities. Indistinguishability follows from iO.

* H,: here we generate x* = PRG(s*) for a uniform random value s*. The only differ-
ence from A is that we replace PRF (7*) with s*. But since only the punctured PRF

PRF™ is needed, this change follows from punctured PRF security.

* Hj: here, we generate hk <— GenBind(1*, m*). The only difference from Hj is that
we replace x* = PRG(s*) with a uniformly random x*. Since s* is uniformly random,

this follows immediately from the pseudorandomness of PRG.

6

Multi-User Incompressible Encryption

179

6.1 INTRODUCTION

BOUNDED-STORAGE MASs SURVEILLANCE. We consider a scenario where a powerful (e.g.,
state-level) adversary wants to perform mass surveillance of the population. Even if the pop-
ulation uses encryption to secure all communication, the adversary can collect large amounts
of encrypted data from the users (e.g., by monitoring encrypted traffic on the Internet). The
data is encrypted and hence the adversary does not learn anything about its contents when it
is collected. However, the adversary may store this data for the future. Later, it may identify
various “persons of interest” and perform expensive targeted attacks to get their secret keys
(e.g., by remote hacking or by physically compromising their devices). We will assume the
adversary is capable of eventually getting any secret key of any user of its choosing. Can we
still achieve any meaningful notion of security against such mass-surveillance?

One option is to rely on cryptosystems having forward secrecy”, which exactly addresses
the problem of maintaining security even if the secret key is later compromised. Unfortu-
nately, forward-secure encryption schemes inherently require either multi-round interaction
between the sender and receiver or for the receiver to perform key updates, both of which can
be impractical or impossible in many natural scenarios. Without these, it may seem that no
reasonable security is possible — if the adversary collects all the ciphertexts and later can get
any secret key, clearly it can also get any plaintext!

In this chapter, we restrict the adversary to have bounded storage, which is much smaller
than the total of size of all the encrypted data it can observe. This is a reasonable assumption

since the total communication of an entire population is likely huge.” As a running example

*Global annual Internet traffic has long surpassed 1 zettabyte (10? bytes) ', while total world-wide data-
center storage is only a couple zettabytes in 2022

180

throughout the introduction, we will assume that the adversary’s storage capacity is 1% of
the total encrypted data size. We allow the adversary to observe all the encrypted data simul-
taneously and then compress it in some arbitrary way to fit within its storage budget. Later,
the adversary can get any secret key of any user of its choosing, and eventually it may even get
all the keys of all the users. What kind of security guarantees can we provide in this setting?
Clearly, the adversary can simply store 1% of the ciphertexts and discard the remaining
99%, which will allow it to later compromise the security of 1% of the users by getting their
secret keys. While one may pessimistically see this as a significant privacy violation already, we
optimistically regard this as a potentially reasonable privacy outcome that’s vastly preferable
to the adversary being able to compromise all the users. For example, if the adversary later
chooses a random user and wants to learn something about their data, it will only be able to
do so with 1% probability, even if it can get their secret key. But can we argue that this is the
best that the adversary can do? In particular, we'd like to say that, no mater what compres-
sion strategy the adversary employs, it will be unable to learn anything about the contents of
99% of the ciphertexts, even if it later gets all the secret keys. Unfortunately, this is not gener-
ically true. For example, the adversary could store the first 1% of the bits of every ciphertext.
If the encryption scheme is (e.g.,) the one-time pad, then an adversary who later learns the
secret keys would later be able to learn the first 1% of every encrypted message of every user,
which may provide a pretty good idea of the overall message contents. In fact, it can get even
worse than this. If the encryption scheme is fully homomorphic, the adversary can individ-
ually compress each ciphertext into a small evaluated ciphertext encrypting some arbitrary
predicate of the data (e.g., was the message insulting of the supreme leader), and therefore

learn the outcome of this predicate about the encrypted data of every user. Even worse, if the

181

encryption scheme is multi-key fully homomorphic, the adversary can derive a compressed
ciphertext that encrypts the output of a joint computation over all the data of all the users, as
long as the output is sufficiently small. Thus, in general, an adversary whose storage capacity
is only 1%, may still be able to learn some partial information about the encrypted messages
0f2100% of the users. The question is then, whether or notit is indeed possible to guarantee

only 1% of users are compromised, and if so to actually design such a scheme.

CONNECTION TO INCOMPRESSIBLE CRYPTOGRAPHY. Encryption schemes that ofter pro-
tection against bounded-storage mass surveillance can be seen as a generalization of 7rcom-
pressible encryption " to the setting of multiple ciphertexts. To clarify the distinction, we
refer to the earlier notion of incompressible encryption as individually incompressible and
our new notion as multi-incompressible.

In an individually incompressible encryption scheme, we can make the size of a cipher-
text flexibly large, and potentially huge (e.g., many gigabytes). An adversary observes a single
ciphertext, but cannot store it in its entirety and can instead only store some compressed ver-
sion of it. Security dictates that even if the adversary later gets the user’s secret key, it cannot
learn anything about the encrypted message. The work of Dziembowski* gave a construc-
tion of one-time symmetric-key encryption with information-theoretic security in this set-
ting, and the previous chapter in this thesis showed how to achieve public-key encryption
in this setting, under the minimal assumption that standard public-key encryption exists.
The previous chapter, along with Branco ez 4/.”’, also constructed such public-key encryp-
tion schemes having rate 1, meaning that the size of the message can be almost as large as the
ciphertext size, and the latter work even showed how to do so under specific but standard

public-key assumptions.

182

In our new notion of multi-incompressible encryption, we also have the flexibility to make
the ciphertext size arbitrarily large. But now the adversary observes a large number of cipher-
texts from many users and compresses them down to something that’s roughly an a-fraction
of the size of all the original ciphertexts, for some c. In particular, the adversary’s storage may
be much larger than a single ciphertext. Later the adversary gets all the secret keys, and we
want to say that the adversary can only learn something about a (roughly) a-fraction of the
messages, but cannot learn anything about the rest.

Our new notion of multi-incompressibility implies individual incompressibility. In par-
ticular, in the case of a single ciphertext, unless the adversary stores essentially all of it (i.e.,
a =2 1), it cannot learn anything about the encrypted message (= 100% of the messages). But
our notion is significantly more general. For example, individual incompressibility does not
even offer any guarantees if an adversary can take even 2 ciphertexts and compress them down
to the size of 1, while multi-incompressibility ensures that one of the messages stays secure.

Formalizing multi-incompressibility is tricky: the natural indistinguishability-based ap-
proach would be to insist that the encryptions of two lists of messages are indistinguishable.
But unlike individually incompressible encryption, in our setting the adversary can always
learn something, namely the messages contained in ciphertexts it chose to store. We there-
fore need a fine-grained notion which captures that some messages to be learned, but other

messages remain completely hidden. We give details on our solution below.

EXTRACTING RANDOMNESS AGAINST CORRELATED SOURCES. Before getting to our re-
sults, we discuss randomness extraction, which is a central tool in all existing constructions
of incompressible encryption. A randomness extractor Ext takes as input a source of imper-

fect randomness X and uses it to distill out some (nearly) uniformly random string Y. Here,

183

we consider seeded extractors, which use a public uniformly random seed S as a catalyst to
extract ¥ = Ext(X;.5), such that Y'should be (nearly) uniform even conditioned on the seed
S.

While randomness extraction is very well studied, it is most often in the single-use case,
where a single string ¥ = Ext(X;.5) is extracted from a single source X having sufficient
entropy. Here we ask: what if many strings ¥; = Ext(X;;S,) are extracted from multiple
sources X; respectively (using independent random seeds S;), but where the sources X; may
be arbitrarily correlated? What guarantees can be made? We consider the case where we only
know that the total joint entropy of all the sources is high, but we know nothing else about
their individual entropies; indeed some of the sources may have no entropy at all! In this
case, clearly not all of the extracted values Y; can be uniform, and some may even be entirely
deterministic. One may nevertheless hope that some of the extracted values remain uniform,
where the fraction of uniform values roughly correlates to combined total entropy rate of all
the sources. To the best of our knowledge, randomness extraction in this setting has not been

studied before.

6.1.1 OURRESULTS.

FORMALIZING MULTI-USER INCOMPRESSIBLE ENCRYPTION. We first provide definitions
for multi-user incompressible encryption. We depart from the indistinguishability-based def-
initions of the prior work on incompressible cryptography*»*>*°, and instead give a simu-
lation-based definition. Essentially, the definition says that anything that an adversary can
learn by taking many ciphertexts of different users, compressing them down sufficiently, and

later getting all the secret keys, can be simulated by a simulator that can only ask to see some

184

small fraction of the plaintexts but does not learn anything about the remaining ones. In the
single-instance case, this definition implies indistinguishability-based security, but appears
stronger. Nevertheless, existing constructions and proofs are readily adapted to satisty simu-
lation security. The distinction becomes more important in the multi-user setting, however,
where simulation security allows us to naturally define what it means for some messages to

be revealed and some to remain hidden.

MULTI-INSTANCE RANDOMNESS EXTRACTORS. As our main technical tool, we explore
a new kind of extractor that we call a multi-instance randomness extractor, which aims to
solve the extraction problem outlined above. Syntactically, this is a standard extractor ¥ =
Ext(X;S) that takes as input a source X and a seed S and outputs some short randomness Y.
However, we now imagine that the extractor is applied separately to # correlated sources X,
with each invocation using an independent seed S;, to derive extracted values ¥; = Ext(X;; S;).
The only guarantee on the sources is that the total joint min-entropy of X = (Xj, ..., X,) is
sufficiently high. Any individual source X;, however, may actually be deterministic (have o
entropy), in which case the corresponding extracted value Y is of course not random. How-
ever, provided the total min-enropy rate of X is high, it is guaranteed that many of the # ex-
tracted values are statistically-close uniform. Ideally, if the joint min-entropy rate of X'is a,
we would hope that roughly oz of the extracted values are uniform.

Formalizing the above requires some care. For example, it may be the case that X is cho-
sen by selecting a random index 7* < [#], setting X;~ to be all 0’s, and choosing the remaining
block X; for j # i* uniformly at random. In that case X has a very high entropy rate, but for
any fixed index 7, the min-entropy of X; is small (at most log # since with polynomial proba-

bility 1/# the value of X; is all 0’s), and not enough to extract even 1 bit with negligible bias.

185

Therefore, we cannot argue that ¥; = Ext(X}; S;) is close to uniform for any particular index
7! Instead, we allow the set of indices 7, for which Y; is close to uniform, itself be a random
variable correlated with X. (See Definition 6.3.1.)

We show constructions of multi-instance randomness extractors nearing the optimal num-
ber of uniform extracted values. In particular, we show that if the joint min-entropy rate
of X = (Xi,...,X,) is a then there exists some random variable /y denoting a subset of
~ « - rindices in [f] such that nobody can distinguish between seeing all the extracted values
Y; = Ext(X};S;) versus replacing all the Y; for 7 € Iy by uniform, even given all the seeds
S;. (See Corollary 6.3.1.) Our constructions are based on Hadamard codes (long seed) and
Reed-Muller codes (short seed). While the constructions themselves are standard, our anal-
ysis is novel, leveraging the list-decodability of the codes, plus a property we identify called
hinting. Hinting roughly means that the values of { Ext(x; S;) }; on some particular exponen-
tially large set of pairwise independent seeds S; can be compressed into a single small hint, of
size much smaller than x. This hinting property is a crucial feature in the Jocal list-decoding
algorithms for these codes, but appears not to have been separately formalized/utilized as a

design goal for an extractor.”

ArrricaTIONS. We then show that multi-instance randomness extraction can be used es-
sentially as a drop-in replacement for standard randomness extractors in prior constructions

of individual incompressible encryption, lifting them to multi-incompressible encryption.

"The work of Aggarwal et al." studied a notion of extractors for “Somewhere Honest Entropic Look
Ahead” (SHELA) sources. The notions are largely different and unrelated. In particular: (i) in our work X
is an arbitrary source of sufficient entropy while Aggarwal ez al.’ places additional restrictions, (ii) we use a
seeded extractor while Aggarwal ez al." wants a deterministic extractor, (iii) we apply the seeded extractor sepa-
rately on each X, while Aggarwal ez al. ' applies it jointly on the entire X, (iv) we guarantee that a large fraction
of extracted outputs is uniform even if the adversary sees the rest, while in Aggarwal ezal. " the adversary cannot
see the rest.

186

As concrete applications, we obtain multi-incompressible encryption in a variety of settings:

* A symmetric key scheme with information-theoretic security, by replacing the extrac-

tor in Dziembowski

* A “rate-1” symmetric key scheme, meaning the ciphertext is only slightly larger than
the message. Here, we assume either decisional composite residuosity (DCR) or learn-

ing with errors (LWE), matching

* A public key scheme, assuming any ordinary public key encryption scheme, matching

the construction 5.3.1 from the previous chapter.

* A rate-1 public key scheme, under the same assumptions as Branco ez al.*T. The

scheme has large public keys.

* Arate-1 public key scheme that additionally has succinct public keys, assuming general

functional encryption, matching construction s.4.1 from the previous chapter.

In all cases, we guarantee that if the adversary’s storage is an « fraction of the total size of all
the ciphertexts, then it can only learn something about a 8 ~ « fraction of the encrypted
messages. We can make 5 = o — 1/p(\) for any polynomial p in the security parameter A,

by choosing a sufficiently large ciphertext size.

MULTIPLE CIPHERTEXTS PER USER. Prior work, in addition to only considering a single

user, also only considers a single ciphertext per user. Perhaps surprisingly, security does not

“One subtlety is that, for all of our rate-1 constructions, we need a PRG secure against non-uniform adver-
saries, whereas the prior work could have used a PRG against uniform adversaries.
"Branco et al. > explores CCA security, but in this chapter for simplicity we focus only on CPA security.

187

compose, and indeed for any fixed secret key size, we explain that simulation security for un-
bounded messages is impossible.

We therefore develop schemes for achieving a bounded number of ciphertexts per user.
We show how to modify each of the constructions above to achieve multi-ciphertext security

under the same assumptions.

THE RaANDOM ORACLE MoDEL. We show how to construct symmetric key multi-user
incompressible encryption with an unbounded number of ciphertexts per user and also es-
sentially optimal secret key and ciphertext sizes, from random oracles. This shows that public

key tools are potentially not inherent to rate-1 symmetric incompressible encryption.

6.1.2 CONCURRENT WORK

A concurrent and independent work of Dinur ez al.** (Section 6.2) considers an extraction
problem that turns out to be equivalent to our notion of Multi-Instance Randomness Extrac-
tor. They study this problem in a completely different context of differential-privacy lower
bounds. They show that (in our language) universal hash functions are “multi-instance ran-
domness extractors” with good parameters, similar to the ones in our work. While concep-
tually similar, the results are technically incomparable since we show our result for hinting
extractors while they show it for universal hash functions. One advantage of our result is that
we show how to construct hinting extractors with short seeds, while universal hash functions
inherently require a long seed. Their proof is completely different from the one in our paper.

The fact that multi-instance randomness extractors have applications in different con-

texts, as demonstrated in our work and Dinur ez 4/. *', further justifies them as a fundamen-

188

tal primitive of independent interest. We believe that having two completely different tech-

niques/approaches to this problem is both interesting and valuable.

6.1.3 OUR TECHNIQUES: MULTI-INSTANCE RANDOMNESS EXTRACTION

We discuss how to construct a multi-instance randomness extractor Ext. Recall, we want to
show that, if the joint min-entropy rate of X = (Xj,...,X,) is v then there exists some
random variable 7y denoting a subset of &~ « - indices in [#] such that the distribution
(S, Y, = Ext(X;; Sl-)),»em is statistically indistinguishable from (Sz'7Zz‘)z'€[t] where Z, is uni-

formly random for 7 € Iy and Z; = Y; otherwise.

A FAILED APPROACH. A natural approach would be to try to show that every standard
seeded extractor is also a “multi-instance randomness extractor”. As a first step, we would
show that there is some random variable 7y denoting a large subset of [f] such that the val-
ues X, for 7 € Iy have large min-entropy conditioned on 7 € Iy. Indeed, such results are
known; see for example the “block-entropy lemma” of Dodis, Quach, and Wichs** (also
Dziembowski*" and Damgird ez al.°*). In fact, one can even show a slightly stronger state-
ment that the random variables X; for 7 € Iy have high min-entropy even conditioned on
all past blocks Xj, ..., X;_;. However, it cannot be true that X; has high min-entropy con-
ditioned on a// other blocks past and future (for example, think of X being uniform subject
to @_, X; = 0). Unfortunately, this prevents us for using the block-entropy lemma to an-
alyze multi-instance extraction, where the adversary sees some extracted outputs from all the

blocks.” It remains as a fascinating open problem whether every standard seeded extractor is

"This strategy would allow us to only prove a very weak version of multi-instance extraction when the
number of blocks # is sufficiently small. In this case we can afford to lose the ¢ extracted output bits from the
entropy of each block. However, in our setting, we think of the number of blocks # as huge, much larger than

189

also a multi-instance randomness extractor or if there is some counterexample.”

OuRAPPROACH. Weare able to show that particular seeded extractors Ext based on Hadamard
or Reed-Muller codes are good multi-instance randomness extractors. For concreteness, let
us consider the Hadamard extractor Ext(x;5s) = (x,s)." Our proof proceeds in 3 steps:

Step 1: Switch quantifiers. We need to show that there exists some random variable 7y such
thatevery statistical distinguisher fails to distinguish between the two distributions (S;, 7)e 1
and (S}, Z;) e We can use von Neumann’s minimax theorem to switch the order quanti-
fiers." Therefore, it suffices to show that for every (randomized) statistical distinguisher D
there is some random variable 7y such that D fails to distinguish the above distributions.

Step 2: Define Iy. For any fixed x = (i, . . ., x;) we define the set Z, to consist of indices
i € [t] such that D fails to distinguish between the hybrid distributions ({S;},¢4,Z1, - - -,
Zi 1, Y;, ... Y versus ({Si}ei, 21, - - Ziy Yoy, - - -, Y2), where in both distributions we
condition on X = x. In other words, these are the indices where we can replace the next
extracted output by random and fool the distinguisher. We then define the random variable
Iy that chooses the correct set /, according to X. It is easy to show via a simple hybrid argu-
ment that with this definition of 7y it is indeed true that D fails to distinguish (S}, 7),c[4 and
(81, Z:)epy-

Step 3: Argue that Iy is large. We still need to show that Iy is a large set, containing ~ « - ¢

the size/entropy of each individual block.

"We were initially convinced that the general result does hold and invested much effort trying to prove it
via some variant of the above approach without success. We also mentioned the problem to several experts in
the field who had a similar initial reaction, but were not able to come up with a proof.

For the sake of exposition, here we only show the case where the extractor output is a single bit. In sec-
tion 6.3, we construct extractors with multiple-bit outputs.

¥Think of the above as a 2 player game where one player chooses Iy, the other chooses the distinguisher
and the payout is the distinguishing advantage; the minimax theorem says that the value of the game is the same
no matter which order the players go in.

190

indices. To do so, we show that if 7y were small (with non negligible probability) then we
could “guess” X with sufficiently high probability that would contradict X having high min-
entropy. In particular, we provide a guessing strategy such that for any x for which /, is small,
our strategy has a sufficiently high chance of guessing x. First, we guess the small set 7, C [7]
as well as all of the blocks x; for 7 € I, uniformly at random. For the rest of the blocks 7 & I,
we come up with a guessing strategy that does significantly better than guessing randomly.
We rely on the fact that distinguishing implies predicting, to convert the distinguisher D into
a predictor P such that for all 7 I we have: P(S,, {S;, Ext(x;;) Fepvqs) = Ext(x;S;)
with probability significantly better than 1/2. Now we would like to use the fact that the
Hadamard code (Ext(x;5) = (x,s)), is list-decodable to argue that we can use such predic-
tor P to derive a small list of possibilities for x. Unfortunately, there is a problem with this
argument. To call the predictor, the predictor requires an auxiliary input, namely aux, =
{85, Ext(x; ;) }ielg\ ()~ Supplying the aux; in turn requires knowing at least # bits about w.
We could hope to guess a good choice of aux;, but there may be a different good choice for
each7 € [¢], and therefore we would need to guess a fresh # bits of information about x just to
recover each block x;, which when |x;| < zis worse than the trivial approach of guessing x; di-
rectly! Instead, we use a trick inspired by the proof of the Goldreich-Levin theorem. For each
block € [£], we guess the values of 5*) := (x;, 51*)) for a very small “base set” of Q random
seeds S}(-l), e Sj<-Q). We can then expand this small “base set” of seeds into an exponentially
larger “expanded set” of 22 — 1 seeds LS}{K) =D ek ;S}(»k) for K C [Q] \ 0, and derive guesses
for b®) = (x;, .S;(-K)> by setting 48) = 3~ . b®). By linearity, the expanded set of guesses is
correct if the base set is correct, and moreover the expanded sets of seeds (S}-K)) Kk are pairwise

independent for different sets K. Therefore, for each set K, we can derive the corresponding

191

(K)

a uxl~K . We can now apply Chebyshev’s bound to argue that if for each 7 we take the majority

value for P(S;, a ufo))

across all 29 — 1 sets K it is likely equal to Ext(x;; S;) with probability
significantly better than 1/2. Notice that we got our saving by only guessing Qr bits about
x = (x1,...,x,) for some small value Q (roughly log(1/¢) if we want indistinguishability)
and were able to use these guesses to recover all the blocks x; for 7 & 1.

Generalizing. We generalize the above analysis for the Hadamard extractor to any extrac-
tor that is list-decodable and has a “hinting” property as discussed above. In particular, this

also allows us to use a Reed-Muller based extractor construction with a much smaller seed

and longer output length.

6.1.4 OUR TECHNIQUES: MULTI-INCOMPRESSIBLE ENCRYPTION

We then move to considering incompressible encryption in the multi-user setting.

DEFINITION. We propose a simulation-based security definition for multi-incompressible
encryption. Roughly, the simulator first needs to simulate all the ciphertexts for all the in-
stances without seeing any of the message queries, corresponding to the fact that at this point
the adversary can’t learn anything about any of the messages. To model the adversary then
learning the secret keys, we add a second phase where the simulator can query for a subset of
the messages, and then must simulate #// the private keys. We require that no space-bounded
distinguisher can distinguish between the receiving real encryptions/real private keys vs re-
ceiving simulated encryptions/keys. The number of messages the simulator can query will

be related to the storage bound of the distinguisher.

192

UPGRADING TO MULTI-INCOMPRESSIBLE ENCRYPTION USING MULTI-INSTANCE RAN-
DOMNESS EXTRACTION. All prior standard-model constructions of individual incompress-
ible encryption "> utilize a randomness extractor. For example, Dziembowski*® gives the

following simple construction of a symmetric key incompressible encryption scheme:

* The secret key k is parsed as (s, ') where s is a seed for a randomness extractor, and #/

is another random key.

* To encrypt a message 7, choose a large random string R, and output ¢ = (R,d =

Ext(R;s) @ & @ m).

The intuition for (individual) incompressible security is that an adversary that cannot
store essentially all of ¢ can in particular not store all of R, meaning R has min-entropy con-
ditioned on the adversary’s state. The extraction guarantee then shows that Ext(R; s) can be

replaced with a random string, thus masking the message 7.

We demonstrate that our multi-instance randomness extractors can be used as a drop-
in replacement for ordinary random extractors in all prior constructions of individual in-
compressible encryption, upgrading them to multi-incompressible encryption. In the case
of Dziembowski*’, this is almost an immediate consequence of our multi-instance random-
ness extractor definition. Our simulator works by first choosing random s for each user, and
sets the ciphertexts of each user to be random strings. Then it obtains from the multi-instance
randomness extractor guarantee the set of indices 7 where Y; is close to uniform. For these
indices, it sets £’ to be a uniform random string. This correctly simulates the secret keys for
these 7.

For 7 where Y; is not uniform, the simulator then queries for messages for these 7. It

193

programs k' as £ = d @ Ext(R;s) @ m; decryption under such &’ will correctly yield .
Thus, we correctly simulate the view of the adversary, demonstrating multi-incompressible

security.

Remark 6.1.x. The set of indicies where Y; is uniform will in general not be efficiently com-
putable, and multi-instance randomness extraction only implies that the set of indices exist.
Since our simulator must know these indices, our simulator is therefore inefficient. In general,
an inefficient simulator seems inberent in the standard model, since the adversary’s state could

be scrambled in a way that bides which ciphertexts it is storing.

We proceed to show that various constructions from the previous chapter and the work
by Branco et al.” are also secure in the multi-user setting, when plugging in multi-instance
randomness extractors. In all cases, the proof is essentially identical to the original single-
user counterpart, except that the crucial step involving extraction is replaced with the multi-
instance randomness extraction guarantee. We thus obtain a variety of parameter size/security
assumption trade-offs, essentially matching what is known for the single-user setting.

One small issue that comes up is that, once we have invoked the multi-instance random-
ness extractor, the simulation is inefficient. This presents a problem in some of the security
proofs, specifically in the “rate-1” setting where messages can be almost as large as cipher-
texts. In the existing proofs in this setting, there is a computational hybrid step that comes
after applying the extractor. Naively, this hybrid step would seem to be invalid since the
reduction now has to be inefficient. We show, however, that the reduction can be made ef-
ficient as long as it is non-uniform, essentially having the choice of indices (and maybe some
other quantities) provided as non-uniform advice. As long as the underlying primitive for

these post-extraction hybrids has non-uniform security, the security proof follows.

194

MULTIPLE CIPHERTEXTS PER USER. Wealso consider the setting where there may be mul-
tiple ciphertexts per user, which has not been considered previously.

It is not hard to see that having an #nbounded number of ciphertexts per user is impossi-
ble in the standard model. This is because the simulator has to simulate everything but the
secret key without knowing the message. Then, for the ciphertexts stored by the adversary,
the simulator queries for the underlying messages and must generate the secret key so that
those ciphertexts decrypt to the given messages. By incompressiblity, this means the secret
key length must be at least as large as the number of messages.

We instead consider the case of bounded ciphertexts per user. For a stateful encryption
scheme, it is trivial to upgrade a scheme supporting one ciphertext per user into one support-
ing many: simply have the secret key be a list of one-time secret keys. In the symmetric key
setting, this can be made stateless by utilizing £-wise independent hash functions.

In the public key setting, achieving a stateless construction requires more work, and we
do not believe there is a simple generic construction. We show instead how to modify all the
existing constructions to achieve multiple ciphertexts per user. Along the way, we show an
interesting combinatorial approach to generically lifting non-committing encryption to the

many-time setting without sacrificing ciphertext rate.

RaNDOM ORACLE MODEL. In Section 6.7, we finally turn to constructions in the random
oracle model. We give a construction of symmetric key incompressible encryption with op-
timal key and ciphertext length, achieving security for an unbounded number of users and
unbounded number of ciphertexts per user. As explained above, this is only possible because
our simulator utilizes the random oracle: the incompressibility argument no longer applies

since the simulator can covertly set the messages by programming random oracle queries.

195

The construction is essentially a 2-round unbalanced Feistel network.

We also show that standard hybrid encryption lifts essentially any random oracle-based
symmetric key incompressible encryption to a public key scheme, assuming only general pub-
lic key encryption. This significantly generalizes a construction of Branco ez al.*’. Note,
however, that as observed by Branco ez /., the security of the scheme in the standard model
is problematic: they show that if the PKE scheme is instantiated with fully homomorphic
encryption, then there is a simple efficient attack that completely violates incompressible se-
curity. This gives a very natural random oracle uninstantiability result. In particular, all prior
random oracle uninstantiabilities require a contrived instantiation of some building block”,
whereas this uninstantiability only requires instantiating hybrid encryption with fully homo-

morphic encryption.

Remark 6.1.2. Note that the underlying symmetric key scheme in Branco et al.”" wuses ideal
ciphers instead of random oracles. Thus, their uninstantiability is only for the ideal cipher
model.”" claims the counterexample applies to random oracles, since random oracles and ideal
ciphers are supposedly equivalent” . However, this is incorrect, as the equivalence only holds in
the “single stage” setting”’. Importantly, incompressible encryption is not a single stage game,
owing to the space bound on the adversary’s storage between receiving the ciphertexts and receiv-
ing the secret keys. In the more general multi-stage setting encompassing incompressible encryp-
tion, the equivalence of ideal ciphers and random oracles is open. Our generalized construction

[fixes this issue by directly designing our symmetric key scheme from random oracles.

"For example, even the “natural” uninstnatiability of Fiat-Shamir°° requires a contrived proof system.

6.2 CHAPTER PRELIMINARIES

Lemma 6.2.1 (Johnson Bound, Theorem 3.1 of *). Let C C X" with |X| = g be any g-ary
error-correcting code with relative distance py = 1 — (1+ p) é for p > 0, meaning that for any
two distinct values x,y € C, the Hamming distance between x, y is at least p - n. Then for any
d > +/plg — 1) there exists some L < (gz(fp;(lq)jl) such that the code is (py = (1— (1+ 5)?),L)-
list decodable, meaning that for any y € Z;‘ there exist at most L codewords x € C that are

within Hamming distance pin of y.

Lemma 6.2.2 (Distinguishing implies Predicting). Forany randomized function D : {0,1}"
x {0,1}" — {0,1} there exists some randomized function P = {0,1}" — {0,1}” such that

for any jointly distributed random variables (4, B) over {0,1}" x {0,1}":

if Pr{D(4, B) = 1] — Pr[D(4, U,) = 1] > & then Pr[P(4) = B] > —(1 + ¢).

1
Zm
Proof. Define P(a) as follows. Sample a random by < {0,1}”, if D(a, by) = 1 output &,
else sample a fresh &; <— {0,1}” and output &;.

Define p = Pr[D(4, U,,) = 1]. Let By, B; be independent random variables that are

uniform over {0,1}” corresponding to the strings &y, &; . Then we have

Pr[P(4) = B] = Pr[D(A4, By) = 1 A By = B| + Pr[D(A4, By) = 0 A B, = B]

— Pt[B, = B Pt[D(4, B) = 1] + Pt[D(4, By) = 0] Pt[B, = B|
1

—) (1= p)yn = 51 +2).

197

6.2.1 INCOMPRESSIBLE SYMMETRIC-KEY ENCcRYPTION (SKE)

Similar to an incompressible PKE scheme discussed in Chapter s, one can also imagine an
analogous incompressible symmetric key encryption (SKE) scheme. This object has been
studied earlier by Dziembowski under the name forward-secure storage*>. The syntax of an
incompressible SKE follows a standard SKE scheme. The “rate” is also defined the same as
the ratio of the message length to the ciphertext length. The security of an incompressible

SKE can be analogously defined through the following experiment DistgfﬁmSKE(A):

1. The adversary A takes 1%, and outputs a space bound 15.
2. Run Gen(1*,1°) to obtain the key 4.

3. Sample a uniform bit 4 € {0,1}.

4. The adversary submits an auxiliary input aux.

5. The adversary submits the challenge query consisting of two messages 729 and 72, and

receives ct <— Enc(k, m).
6. A; produces a state st of size at most S.

7. The adversary A, is given the tuple (k, aux, st) and outputs a guess &' for . If &’ = b,
we say that the adversary succeeds and the output of the experiment is 1. Otherwise,

the experiment outputs 0.

Definition 6.2.1 (Incompressible SKE Security). Let X and S be security parameters. A sym-

metric key encryption scheme I1 = (Gen, Enc, Dec) is said to have incompressible SKE security

if for all PPT adversaries A = (A, A,):

Pr [DistiﬁfﬁmSKE(A) =1] < = + negl(N).

N | =

6.3 MULTI-INSTANCE RANDOMNESS EXTRACTION

6.3.1 DEFINING MULTI-INSTANCE EXTRACTION

Definition 6.3.1 (Multi-Instance Randomness Extraction). A4 function Ext : {0,1}” x
{0,1}¢ — {0,1}" is (¢, «t, 3, €)-multi-instance extracting if the following holds. Let X =
(Xi,...,X.) be any random variable consisting of blocks X; € {0,1}" such that Hy(X) >
o - tn. Then, there exists some random variable Iy jointly distributed with X, such that Iy is

supported over sets T C [f] of size |Z| > [- tand:
(Sl, e aSta EXt(XI;Sl), Ceey EXt(Xt,St>> e (Sl, R 7St7Zh e aZt)
where S; € {0,1}¢ are uniformly random and independent seeds, and Z; € {0,1}™ is sam-

pled independently and uniformly random for i € Iy while Z; = Ext(X;; S;) fori & Ix.

In other words, the above definition says that if we use a “multi-instance extracting” ex-
tractor with independent seeds to individually extract from # correlated blocks that have a
joint entropy-rate of «, then seeing all the extracted outputs is indistinguishable from replac-

ing some carefully chosen 3-fraction by uniform.

199

6.3.2 HINTING EXTRACTORS

Definition 6.3.2 (Hinting Extractor). A function Ext : {0,1}* x {0,1}* — {0,1}" isa

(0, L, b, Q)-hinting extractor if it satisfies the following:

* List Decodable: If we think of ECC(x) = (Ext(x;s)),eqo1y4 as a (2%, n)s—jo 3 error-
correcting code over the alphabet ¥ = {0, 1}", then the code is (p = 1— (14 6)27", L)-
list decodable, meaning that for any y € Ezd, the number of codewords that are within

Hamming distance p - 24 of y is at most L.

* Pairwise-Independent Hint: There exists some functions hint : {0,1}" x {0,1}" —

{0,1}*, along with recy and rec, such that:

— Forallx € {0,1}",r € {0,1}7, if we define o = hint(x;7), {s1,...,50} =

reco(7), and {y, . ..,yo} = reci(0, r), then Ext(x;s;) = y; forall i € [Q].

— Over a uniformly random r <— {0,1}7, the Q seeds {s\, . .. ,so} = recy(r), are

individually uniform over {0,1}* and pairwise independent.

Intuitively, the pairwise-independent hint property says that there is a small (size /) hint
about x that allows us to compute Ext(x; ;) for a large (size Q) set of pairwise independent
seeds 5;. We generally want Q to be exponential in /.

Thelist-decoding property, on the other hand, is closely related to the standard definition
of strong randomness extractors. Namely, if Ext is a (&, €)-extractor then itisalso (p = 1 —
(146)27™, 2%)-list decodable for § = €27, and conversely, ifitis (p = 1 — (1+7)27", 2%)-

list deocdable then itis a (k + m + log(1/9), §)-extractor (see Proposition 6.25 in”*).

200

CONSTRUCTION 1: HADAMARD. Define Ext : {0,1}”x{0,1}” — {0,1}” via Ext(x;s) =
(x,s), where we interpret x, s as elements of 3, for 7 := n/m and all the operations are over

F2n. The seed length is d = 7 bits and the output length is 7 bits.

Lemma 6.3.1. The above Ext : {0,1}" x {0,1}* — {0,1}" ésa (8, L, b, Q)-hinting

extractor for any b, § > 0 with Q > 2"~ and L < 2% /5.

Proof. Thelist-decoding bounds on §, L come from the Johnson bound (Lemma 6.2.1) with
g = 2", p = 0. For pairwise-independent hints, let 5 = 5/m and define hint(x; R) to
parse R € IFQ;” and output o = R - x|, which has bit-size h. Let V C Fl;m be a set of
vectors such that any two distinct vectors v; # v, € V are linearly independent. Such a
set V exists of size Q = (2’”)1;_1 + (2’”)1;_2 4 42" 41> 2" eg, by letting V be
the set of all non-zero vectors whose left-most non-zero entry is a 1. Define recy(R) so that
it outputs {s, = v - R},ep. Correspondingly, rec;(o, R) outputs {y, = (v,0)},ep. It’s
easy to sce that the seeds s, are individually uniform and pairwise independent, since for any
linearly-independent v; # v, € V and the values,, = v,R ands,, = v,R are random and

independent over a random choice of the matrix R. Moreover for all seeds 5, we have

Ext(x,5,) = {5,%) =0- R -2 = (0,0) = .

CONSTRUCTION 2: HADAMARD 0 REED-MULLER. Define Ext(f;s = (s1,5)) = (fa),
L+g

52), where f € F,,¢ ~ isinterpreted as a (-variate polynomial of total degree ¢ over some field

201

*

ofsize2" > g,ands; €]Fgw isinterpreted as an input to the polynomial (this is Reed-Muler)

Then y = f{5) and s, are interpreted as a values in F%m and the inner-product (y, s,) is
computed over [Fy» (this is Hadamard). So overall, in bits, the inputlengthis z = w - (Ejgrg) S

the seed length is d = w(¢ + 1) and the output length is 7. This code has relative distance

1- (55 +5)=1- %01+ 3%5).

Lemma 6.3.2. Foranyw,{,g, m, 0 such that 2 > g and m divides w, if wesetn = w- (Z;g),

d = w(l + 1) then the above Ext : {0,1}" x {0,1}* — {0,1}" s a (6, L, b, Q)-hinting
extractor with 0 = \/g2%" /2%, L = %, h=w-(¢g+1),Q=2"
In particular, for any n, m, w such that m divides w, we can set { = g = logn to get an

(8, L, b, Q)-hinting extractor Ext : {0,1}* x {0,1}* — {0,1}" withd = O(wlogn),

§ = omtloglogn=w/2 |, — O(wlogn) and Q = 2.

Proof. Thelist-decoding bounds on §, L come from the Johnson bound (Lemma 6.2.1) with

g = 2" p = zwg,m. On the other hand, for pairwise-independent hints, we can define

hint(£;) as follows. Parse » = (#°, 7,5, ... 59 with 7,4 € Fland & €]F;Jn{m Let
}"(z') = A7’ + 7 -) be a univariate polynomial of degree ¢ and define the hint o = fto be
the description of this polynomial. Define {s; = (s,s5)) = reco(r) for 7 € Fu by setting
sy = 7 47 7. Define {y;} = reci(o,7) viay, = {}A‘(z'),sﬁ. It is easy to check correctness
and pairwise independence follows from the fact that the values s = 7 + 7 - 7' are pairwise

independent over the randomness 7, 7. O

*Since the the input to the extractor is interpreted as a polynomial, we will denote it by frather than the
usual x to simplify notation.

202

6.3.3 HINTING-EXTRACTORS ARE MULTI-INSTANCE-EXTRACTING

Lemma 6.3.3 (Multi-Instance-Extraction Lemma). Let Ext : {0,1}” x {0,1}¢ — {0,1}"

22m

be a (6, L, b, Q)-hinting extractor. Then, for any t,cc > 0 such that Q > 2t it is also

log L+h-+log t+log(1/€)+3

n

(¢, a0, B, €)-multi-instance extracting with € = 616 and = o —

Proof. Our proof follows a sequence of steps.

STEP 0: RELAX THE S1ZE REQUIREMENT. We modify the statement of the lemma as fol-
lows. Instead of requiring that |Zx| > - #holds with probability 1, we relax this to requiring
that Pr[|Zx| < ¢ < €/4. On the other hand, we strengthen the requirement on statistical

indisitnguishability from € to € /2:

(Sh e 7St7 EXt(Xl;Sl)7 ey EXt(XhSt)) %5/2 (Sla e ,.S},Z'l7 . 7Zt)'

This modified variant of the lemma implies the original.

To see this, notice that we can replace the set Jy that satisfies the modified variant with
I'» which is defined as Iy := Iy when |Iy| > frand Iy :== {1,..., Bt} else. The set [y then
satisfies the original variant. In particular, we can prove the indisintinguishability guarantee
of the original lemma via a hybrid argument: replace [} by Iy (¢ /4 statistical distance), switch
from the left distribution to right distribution (¢ /2 statistical distance), replace Iy back by 7

(€/4 statistical distance) for a total distance of .

STEP 1: CHANGE QUANTIFIERS. We need to prove that: for all X with Hy (X) > « - tn,

there exists some random variable Iy C [f] with Pr||Ix| < Bt| < ¢€/4 such that for all

203

(inefficient) distinguishers D:

PrD(S, ..., S Y, X)) =1 —PeD(S,.... S, Z,....Z) =1 <e/2 (61)

where we define Y; = Ext(X;; S;), and the random variables Z; are defined as in the Lemma.
By the min-max theorem, we can switch the order of the last two quantifiers. In particular,
it suffices to prove that: for all X with Hy(X) > o - tn and for all (inefficient, randomized)
distinguishers D there exists some random variable Iy C [f] with Pr[|Ix| < Pt] < ¢/4 such
that equation (6.1) holds.

We can apply min-max because a distribution over inefficient distinguishers D is the same
as a single randomized inefficient distinguisher D and a distribution over random variables

Iy is the same as a single random variable /y.

STEP 2: DEFINE [y. Fix a (inefficient/randomized) distinguisher D.
For any fixed value x € {0,1}"7, we define a set I, C [¢] iteratively as follows. Start with

I, =0.Fori=1,...,tadd7to L if

Pe[D(Sy, .. S ZE o 2 Y Y, Y =1

[—

<36 (6.2)

— DDy, S0 T T Uy Yoy, V) =1

where S, is uniform over {0, 1}, Y7 = Ext(x;;.5;) and forj < 7 we define Z; to be uniformly
random over {0, 1}" for j € I, while Z7 = Y7 forj ¢ .. Note that ¥7 = (¥;[X = x) and
Z5 = (Z|X = x).

Define Iy to be the random variable over the above sets 7, where x is chosen according to

204

X. With the above definition, equation 6.1 holds since:

PrD(S, ..., S Y,) =1 —Pe[D(S,,.... S, Z,.... 2Z) =1]
= EuxPtD(S, ..., S YY) =1 X =] — PH{[D(Sy, ..., S0 21, .., Z) = 1|X = 4]

= Eox PD(S,, ..., S, Y, .. Y) =1 —Pe[D(S,,.... S, 2, ..., Z") = 1]

PrD(S, ... S 2 25 LYY, YY) =1
=Exy [D(S: 641 ! +1 7)) =1]
el \ — PrD(Sy,....S. 2, 2 ZL Y,) =1
*)
< 3t0 =¢/2

The last line follows since, for any x and any 7 € [¢], if 7 & I, then ¥¥ = Z and therefore

(¥) = 0,and if 7 € 7, then (x) < 36 by the way we defined /. in equation (6.2).

STEP 3: ARGUE [y 1S LARGE. We are left to show that
Pr{|ly] < B4 < /4 (6.3)

We do this via a proof by contradiction. Assume otherwise that (6.3) does not hold. Then
we show that we can guess X with high probability, which contradicts the fact that X has high
min-entropy. In particular, we define a randomized function guess() such that, for any x for

which |L,| < - ¢, we have:

Pr [x=a] > = (HH20L2P) (6.4)

x4—guess()

N

205

Then, assuming (6.3) does not hold, we have

Pr [x=x] > PrX[|[x| < Bt Pr [x=x| |L] < Bt
X4

x—guess(),xX i<—guess(),x+X

> i ([ﬂt+12htL126tn)_l
~ 16 .

which contradicts H, (X) > an.
Before defining the function guess(), we note that by the definition of 7, in equation
(6.2) and the“distinguishing implies predicting” lemma (Lemma 6.2..2), there exist some pre-

dictors P; (depending only on D), such that, forall x € {0,1}” and 7 & I, we have:

1
PrlPASy o S0 2y 2y Vi) = Y] 2 (14 30) (6.5)

The guessing strategy. We define guess() using these predictors P; as follows:
1. Sample values 74, . .., 7, with 7, - {0,1}".
2. Sample a set 1. C [f] of size |I| < Bt uniformly at random.
3. Sample values 6, < {0,1}” for 7 & I, uniformly at random.
4. Sample values %; < {0,1}” for 7 € I, uniformly at random.
5. Let {s!,. .., 5%} = recy(r;),and O ,le} = rec,(0;, 7).

6. Use all of the above values to define, for each 7 ¢ 1., a randomized function E(J)

206

which chooses a random ;* < [Q] and outputs:

~ o ok ok ok S

Pi(s) =P, st A A)

where 2, ::y/:* ifi ¢ I,and 2, « {0,1}"ifi € I..

z

7. Foreach 7 ¢ 1, define cw; € X' by setting cw,[s] < 2i(s), where & = {0,1}”. Let
X; be the list of at most L values ¥, such that the Hamming distance between ECC(%;)

and cw; is at most (1 + §)2%, as in Definition 6.3.2.
8. Foreach: ¢ 1, sample x; <— X
9. Outputx = (%, ...,%).
Fix any x such that |7,| < frand let us analyze Pri guess() X = «].

Event E,. Let E, be the event that I, = I, and, forall 7 € I,: %; = x;and 6, = hint(x;, 7;).
tﬁt-l—l htnBin) 1 e : :
Then Pr[Ey] > (#771272%™) " . Letus condition on £, occurring for the rest of the analysis.
In this case, we can replace all the “hatted” values }x, 0;, X; with their “unhatted” counterparts
I, 0; = hint(x;, 7,), x; and we have y, = Ext(x;;). Furthermore, since the “hatted” values
were chosen uniformly at random, £ is independent of the choice of 71, . . ., 7, and of all the

“unhatted” values above; therefore conditioning on £, does not change their distribution.

Event E,. Now, for any fixed choice of 71, . . . , 7, define the corresponding procedure 131- to
be “good” if
R 1
Pr [P(s) = Ext(x;s)] > (1+26)—,
P [= Extlais)] 2 (14 20) 5

207

where the probability is over the choice of s <= {0,1}% and the internal randomness of 7,

(ie., the choice of the index /* <— [Q] and the values z/; < {0,1}" for7 € I,). Let E; be the

event that for all 7 € I, we have P; is good, where the event is over the choice of 74, . . ., 7.
Define random variables 77, over the choice of 71, . . ., 7, where

V= Pr_[Ps) = Ext(x;s) |/ =]

s«{0,1}4

= DPr [Pz'(jia'"747175;5§+17"'a~47z]1‘7'"72];:717)7;+17"'a)/1‘) = Ext(x;;5)].

s«{0,1}4

and V; == 3200 V. Then P;is good iff V; > Q(1 + 20) 5. By equation (6.5), we have
E[V] = 3 E V] > 0(1 + 38) 5. Furthermore, for any fixed 7, the variables V. are pair-
wise independent by Definition 6.3.2 and the fact that v only depends on 5. Therefore
VarlVi] =3, Var[V/] < Q. We can apply the Chebyshev inequality to get:
1
1
>1-— P - 1+20)—
> ; r{VZ<Q(+ 5)274

1 2
>1-» Pr {\VZ-—E[VZ-H > Qéz—m] >1—t—>=
i1y

Event E,. Now fix any choice of the values in steps (1)-(6) such that £y, £; hold. Let cw;
be the values sampled in step 7. Define the event £ to hold if for all 7 & I, the value cw;
agrees with ECC(x;) is at least (1 + 6)2?~™ coordinates, where the probability is only over
the internal randomness used to sample the components cw;(s) < Pi(s). We can define

random variables 77 which are 1 if cw;(s) = Ext(x;;5) and 0 otherwise. These variables

208

are mutually independent (since each invocation of P; uses fresh internal randomness) and

E[>., W3] = 24 Pr,[Pi(s) = Ext(x;;5)] > (14-26)2% . Therefore, by the Chernoff bound:

Pr(Ey By AE) =1—Pr[Fi &1, : > W< (140)2"]

>1- 3 PrY W< (146)27]
i€l s
1

>1—p- %278 > 2
-)
Event E;. Finally, fix any choice of the values in steps (1)-(7) such that £, £, E; hold. Let
Ej; be the event that for each 7 ¢ 1. ifx, + X, is the value sampled in step (8) then &; = ;.
Then Pr[E3|E, A Ey A Ey] > (%)t Therefore, our guess is correct if Ey, Ey, E, E3 all occur,

which gives us the bound in equation (6.4). O]

Corollary 6.3.1. For any n,m,t,e > 0,a > 0, there exist extractors Ext : {0,1}" x

{0,1}¢ — {0,1}" that are (¢, o, 3, €)-multi-instance extracting with either:

O(mlog t+log(1/¢))

n

1. seed lengthd = nand 3 = o —

, or

2. seed length d = O((logn)(m + loglogn + logr + log(1/¢))) and = o — o)

n

In particular, letting \ denote the security parameter, for any input length n = w(Alog\)
withn < 2%, for number of blocks t < 2A any entropy rate & > 0, there exists an ex-
tractor Ext : {0,1}" x {0,1}* — {0,1}" with output length m = X and seed length
d = O(Nlogn), which is a (t,«, 8,6 = 27)-multi-instance randomness extractor with
B = a — o(1). In other words, the fraction of extracted values that can be replaced by uni-

form is nearly c.

209

6.4 MULTI-USER SECURITY FOR INCOMPRESSIBLE ENCRYPTION

Utilizing multi-instance randomness extractors, we can now explore the multi-user setting
for incompressible encryptions. But first, we need to formally define what it means for an
incompressible PKE or SKE scheme to be multi-user secure.

We propose a simulation-based security definition. Roughly, the simulator first needs to
simulate all the ciphertexts for all the instances without seeing any of the message queries. So
far, this is akin to the standard semantic security notion for encryption. But we need to now
model the fact that the adversary can store ciphertexts for later decryption, at which point it
has all the private keys. We therefore add a second phase where the simulator can query for a
subset of the messages, and then must simulate @/ the private keys. We require that no space-
bounded distinguisher can distinguish between receiving real encryptions/real private keys
vs receiving simulated encryptions/keys. The number of messages the simulator can query is
related to the storage bound of the distinguisher.

Put formally, let II = (Gen, Enc, Dec) be a public key encryption scheme, to define
simulation-based incompressible ciphertext security for the multiple-instance setting, con-

sider the following two experiments:

* Inthereal mode experiment, the adversary A = (A;, A,) interacts with the challenger

C, who has knowledge of all the adversary’s challenge messages.

Real MOdC EXpRealg,A:(.Al,Az)(A7 n, g, S)

1. For7 € [n), the challenger C runs Gen(1*, 1%) to sample (pk;, sk;).

2. The challenger C sends all the pk;’s to A;.

3. Foreach 7 € [n], A, can produce up to £ message queries {72, } (. The adver-
sary submits all of the message queries iz one single batch {m,;};; and receives

{ct;;}i; where ct;; < Enc(pk;, m;).
4. A; produces a state st of size at most S.
5. Oninputofst, {m,};, {(pk;, sk;)}; A, outputs a bit 1/0.
* In the ideal mode experiment, the adversary A = (\A;, A,) interacts with a simulator

S, which needs to simulate the view of the adversary with no/partial knowledge of the

challenge messages.

Ideal Mode Expldeals 4_(4, 4,)(X, 7,4, 4. 5):

1. For7 € [n)], the simulator S samples pk,.
2. The simulator S sends all the pk,’s to A;.

3. Foreach7 € [n],and; € [{], A; produces m; ;. All of the queries {m;};; are

submitted in one batch and the simulator S produces {ct;},; without seeing
{ mid‘}iﬂ'-
4. Aj produces a state st of size at most S.

5. The simulator now submits up to g number of (7, /) index pairs, and receives the

corresponding messages 72, ;’s. Then S simulates all the secret keys sk,’s.
6. Oninputofst, {m;}.;, {(pk;, sk;) };» Az outputs a bit 1/0.
Notice that the simulator needs to simulate the ciphertexts first without knowing the

corresponding messages, and then sample the secret keys so that the ciphertexts appear

appropriate under the given messages.

Definition 6.4.1 (Multi-Instance Simulation-Based CPA Security). For security parame-
ters X\, 1(N), L(N),g(N) and S(N), a public key encryption scheme I1 = (Gen, Enc, Dec) s
(n,£,q,S)-MULT-SIM-CPA secure if for all PPT adversaries A = (Ai, Az), there exists a

simulator S such that:
|Pr [ExpRealy 4 (A, 1, £, 8) =1] — Pr [Expldealg 4(\,n,¢,4,5) = 1]| < negl(}).

Remark 6.4.1. If{ = 1, wesay that the scheme has only single-ciphertext-per-user security. For

U > 1, we say that the scheme bas multi-ciphertext-per-user security.

Remark 6.4.2. Notice that by replacing the underlying PKE scheme with a Symmetric Key
Encryption (SKE) scheme and modifying corresponding syntaxes (sample only sk’s instead of
(pk, sk) pairs, and remove step 2 of the experiments where the adversary receives the pk’s), we

can also get a MULT-SIM-CPA security definition for SKE schemes.

6.5 SYMMETRIC KEY INCOMPRESSIBLE ENCRYPTION

In this section, we explore the multi-user security of incompressible SKEs, both in the low-
rate setting and the rate-1 setting. We also present a generic lifting technique to obtain an SKE

with multi-ciphertext-per-user security from an SKE with single-ciphertext-per-user security.

6.5.1 Low RATE INCOMPRESSIBLE SKE

Forlow rate incompressible SKE, it follows almost immediately from multi-instance random-

ness extractors that the forward-secure storage by Dziembowski** is MULT-SIM-CPA secure

(by using multi-instance randomness extractors as the “BSM function” and using One Time
Pad (OTP) as the underlying SKE primitive).
First, let us recall the construction by Dziembowski **, with the multi-instance random-

ness extractors and OTP plugged in.

Construction 6.5.1 (Forward-Secure Storage). Let X and S be security parameters. Given

Ext : {0,1}* x {0,1}¥ — {0,1}* a (¢, v, B, €)-multi-instance randomness extractor as

defined in Definition 6.3.1 where the seed length d = poly(\), output length w = poly(\)
s

andn = =5, + poly(\), the construction I1 = (Gen, Enc, Dec) for message space {0,1}

works as follows:

« Gen(1* 15): Sample a seed s < {0,1} for the randomness extractor, and a key k' <+

{0,1}*. Output ke = (s, k).

* Enc(k, m): Toencrypta message m, first parsek = (s, k') and sample a long randomness

R + {0,1}". Compute the ciphertext asct = (R, ct’ = Ext(R;s5) & k' & m).

* Dec(k, ct): First, parsect = (R, ct') and k = (s, k'). Then compute m = Ext(R;s) &

K @ ct.

Correctness is straightforward. Construction 6.5.1 is also MULT-SIM-CPA secure. Es-
sentially, the simulator simply sends ct;’s as uniformly random strings. Then when the sim-
ulator sends the keys, it would use the simulator for the multi-instance randomness extractor
to get the index subset 7 C [n], and for 7 € I, simply send #; as a uniformly random string.
For i ¢ I, it samples the extractor seed s; and then compute k. = m; & Ext(R;;s;) & ct.

Notice that for 7 & I, ct, = m; ® Ext(R;;s;) ® k., and fori € [, ct, = m,; @ u; O k| where

213

u; is a w-bit uniform string. This is now just the definition of multi-instance randomness
eXtractors.

We prove below the MULT-SIM-CPA security of Construction 6.5.1 formally through a
sequence of hybrids.

In hybrid o, we start with the ideal mode experiment Expldealg A=(A,A,) With a specific
simulator plugged in, and through the sequence of hybrids, we gradually move towards the

real mode experiment Exp Realgy A= (AL)

SEQUENCE OF HYBRIDS
* Hybrid H: The ideal mode experiment Expldea|g7A:(Al7Az)(t, L (1= p)t.S).

1. Foreach7 € [#], A; produces m;,. All of the queries {m;}, are submitted in a
single batch and 7o available to the simulator S. S samples uniformly random
ciphertexts ct; = (R,, ct;), and hence is able to produce {ct;}, without seeing
{m:}.

2. A; produces a state st of size at most S.

3. Thesimulator S runs the simulator for the multi-instance randomness extractor
to get a set of indices / C [¢] with |7] > fz. The simulator now submits the set
[\, and receives the corresponding messages {72} ;¢;. Then S simulates all the
keys &;’s. For 7 € I, sample a uniform k; <— {0,1}*. For 7 ¢ I, sample a uniform

seed s;, and compute k; = (s;, m; G Ext(R;;s;) & ctl).

4. Oninputofst, {m;},, {k:}:; A, outputs a bit 1/0.

214

* Hybrid H;: The same as H, except that in step 3, for 7 € 7/, sample a uniform s, and

compute k; = (s;, m; G u; ® ct}), where #; is a uniformly random w-bit string.

* Hybrid H,: The same as Hj, except that in step 3, for all 7, sample a uniform seed s,
and compute k; = (s;, m; @ Ext(R;;s;) @ ctl). Notice that the game is now identical
to the real mode experiment ExpRea IE A= (A1 A2)> where we send the adversary faithful

encryptions of the message queries.

ProoF oF HYBRID ARGUMENTS

Lemma 6.5.1. No adversary can distinguish between Hy and H, with non-negligible proba-

bility.

Proof. Notice that the only difference between Hjy and H; is thatin H, for 7 € I, we sample a
uniform s; and a uniform £, and in A, we sample a uniform s; and compute & as m; S u,Bctl,
where #; is a uniform w-bit string. This is just an One Time Pad (OTP) encryption of m; ©
ct}, and hence should be indistinguishable from a uniformly random £, by the information-

theoretic security of OTP.]

Lemma 6.5.2. IfExt : {0,1}" x {0,1}¢ — {0,1}" isa (¢, o, B, €)-multi-instance random-

. Y .. .
ness extractor with n = ey T poly(\), then no adversary can distinguish between Hy and

H, with non-negligible probability.

Proof. First, notice the difference between A and H,. In H,, for all 7, we have k; = (s;, m; ®
Ext(R;;s;) @ ct)). InHy, fori € Lk, = (s;,m; B u; ®ct)). Fori & Lk, = (s;,m; B

Ext(R;;s;) @ ct)) is the same.

215§

Notice that each R, is a uniformly random #-bit string independent of #2,. Sobylemma2.1.1,
Hoo({R.}i|st, {m;};) = Hoo({R;}ilst) > nt — n(1 —)t = « - tn, ie. {R;}; has at least
a - tn bits of min-entropy conditioned on the adversary’s view. And recall that / is the set
of indices output by the multi-instance randomness extractor simulator. We can invoke the

property of the multi-instance randomness extractor, and hence have

(515 ey EXC(Ry;51), oo EXC(Rys50)) e (51, ey, 20y o o3 Zt)s

where Z; = wu;foralli € I,and Z; = Ext(R;s;) forall 7 ¢ I Notice that in Hj, we
equivalently have k; = (s;, m;®Z;@ct.), and in H,, we have k; = (s5;, m; B Ext(R;;s;) Bctl).
The only difference is that in H; we have the Z,’s instead of the Ext(R;;s;)’s in H>, and these
are indistinguishable by the extractor property. Hence, no adversary can distinguish between

H; and H, with non-negligible probability. O

Theorem 6.5.1. Let \, S be security parameters. If Ext = {0,1}* x {0,1}¢ — {0,1}" is

. . _ _ s
a (¢, «, B, €)-multi-instance randomness extractor with d,w = poly(\) and n = oy T

poly(\), then Construction 6.5.1 is (t,1, (1 — 3)z,5)-MULT-SIM-CPA secure.
Proof. The lemmas above show a sequence of a polynomial number of hybrid experiments
where no adversary can distinguish one from the next with non-negligible probability. Notice

that the first hybrid H| corresponds to the ideal mode experiment of multi-user security, and

the last hybrid A, corresponds to the real mode one. The simulation-based security follows.

]

Remark 6.5.1. While MULT-SIM-CPA security only requires that no PPT adversaries can

distinguish between the real mode and the ideal mode experiments, what we have proved for con-

216

struction 6.5.1 bereis that it is actually MULT -SIM-CPA secure against all (potentially compu-
tationally unbounded) adversaries, and hence is information theoretically MULT-SIM-CPA

secure.

6.5.2 RATE-1 INCOMPRESSIBLE SKE

Branco, Déttling and Dujmovic*’ construct rate-1 incompressible SKE from HILL-Entropic
Encodings”’, extractors and PRGs. We show that by replacing the extractors with multi-
instance randomness extractors and slightly modifying the scheme, we get MULT-SIM-CPA
security.

First, we recall the definitions and security requirements of a HILL-Entropic Encoding

scheme

Definition 6.s.1 (HILL-Entropic Encoding”). Let A be the security parameter. An (., 3)-

HILL-Entropic Encoding in the common random string setting is a pair of PPT algorithms

Code = (Enc, Dec) that works as follows:

* Ences(1*,m) — ¢ On input the common random string crs, the security parameter,

and a message, outputs a codeword c.

* Deces(c) — m: On input the common random string and a codeword, outputs the

decoded message m.

It satisfies the following properties.

Correctness. Forall A\ € Nand m € {0,1}*, Pr[Decqs(Ences(1,m)) = m] > 1 —

negl(\).

217

a-Expansion. Forall \, % € Nand forall m € {0,1}*, |[Enc.s(1*, m)| < a(), k).

B-HILL-Entropy. There exists a simulator algorithm SimEnc such that for all polynomial
k = k() and any ensemble of messages 7 = {m,} of length £(\), consider the following

real mode experiment:
e crs < {0,104
* ¢+ Encys(1*, my)

andlet CRS, Cdenote the random variables for the corresponding values in the real mode

experiment. Also consider the following simulated experiment:
* (crs’,) < SimEnc(1*, my)

and let CRS', C’ be the corresponding random variables in the simulated experiment. We
require that (CRS, C) =, (CRS', C') and that H,,(C'|CRS') > B(\, k).

Moran and Wichs ™ show that we can construct HILL-Entropic Encodings in the CRS
model from either the Decisional Composite Residuosity (DCR) assumption®>** or the
Learning with Errors (LWE) problem™. Their construction achieves a(\, k) = k(1 +
o(1))+poly(A) and B(\, k) = k(1—0(1)) — poly(A), which we call a “good” HILL-entropic

encoding.

Now we reproduce the construction from** with the multi-instance randomness extrac-

tors and some other minor changes (highlighted below).

Construction 6.5.2(*). Let \and S besecurity parameters. Given Ext : {0,1}"x{0,1}4 —

{0,1}* a (¢, v, B, €)-multi-instance randomness extractor as defined in Definition 6.3.1 where

218

the seed length d = poly(\), w = poly(X) and n = (1%04); + poly(A), Code = (Enc, Dec) 4

“good” (o, ')-HILL-Entropic Encoding scheme, and PRG : {0,1}* — {0,1}" a psendoran-
dom generator secure against non-uniform adversaries, the construction 11 = (Gen, Enc, Dec)

for message space {0, 1} works as follows:

* Gen(1* 15): Sample a seed s < {0,1}* for the randomness extractor, a common ran-
dom string crs € {0,1}PY) for the HILL-Entropic Encoding, and a random pad

r < {0,1}". Outputk = (s, r, crs).

* Enc(k, m): To encrypt a message m, first parse k = (s, r, crs) and sample a random
PRG seed s < {0,1}*. Compute c; = Code.Ences(1*, PRG() @r ®m) and c; =

s @ Ext(c,s). The final ciphertext is ct = (1, ¢2).

* Dec(k, ct): First, parsect = (c1, c2) and k = (s, r, crs). Then computes’ = Ext(cy;5)@®

¢, and obtain m = Code.Decys(c;) ® PRG(s') @r.

Correctness follows from the original construction and should be easy to verify. Notice
that by the o’-expansion of the “good” HILL-entropic encoding, the ciphertexts have length
(1 +0(1))n + w + poly(A) = (1 + o(1))z + poly(X) (the poly(\) part is independent
of 7), while the messages have length 7. Hence the scheme achieves an optimal rate of 1
((1 — o(1)) to be exact). The keys are bit longer though, having size d + 7 + poly(\, n) =
n + poly(A, 7). Furthermore, Moran and Wichs”” show that the CRS needs to be at least as
long as the message being encoded. Thus the key has length at least 2z + poly(A).

We prove security of Construction 6.5.2 through a sequence of hybrids.

219

SEQUENCE oF HYBRIDS
® HYbrld Hy:

— Run the adversary A to receive {m,}, fori € [¢].

— Foreachi € [4:
* Sample s; < {0, 1} uniformly at random.
* Sample 7; <— {0,1}” uniformly at random.
* Sample 5. <— {0,1}" uniformly at random.
* Sample crs; uniformly at random.
* Letcy; < Code.Encys, (1%, PRG(s)) @ 7; & m).
* Letcy,; < 5. @ Ext(cis;5:).
* Letct, = (a4, 2.)-

— Send {ct,}, to A; and receive a state st.

— Let {k/}; = {(s;, 72, cr5/) }.

— Oninputof st, {m;};, {k.}, A, outputs a bit 1/0.
® HYbrld Hi:

— Run the adversary A to receive {m,}, fori € [¢].

— Foreachi € [1]:

* Sample s; <~ {0, 1} uniformly at random.

* Sample 7; <— {0, 1}” uniformly at random.

220

* Sample s’ <— {0,1}* uniformly at random.
* Let (crs;, 1) < SimEnc(1*, PRG(s)) @ r; & m;).
* Letey,; 5 @ Ext(cy).
* Letct; = (c1,¢2,)-
— Send {ct,}; to A; and receive a state st.
— Let{k;}; = {(s:, s, crs)) }.

— Oninput of st, {m;,},, {k;}:, A, outputs a bit 1/0.
® HYbI'Id H;:

— Run the adversary A, to receive {m;}, fori € [4].
— Foreachi € [1]:

* Sample s; < {0, 1} uniformly at random.

*

Sample #; < {0,1}” uniformly at random.

*

Sample 5. <— {0,1}* uniformly at random.
* Let (crs;,c1,;) < SimEnc(1Y, #;).
* Letey, < 5. @ Ext(a;;5).
* Letct; = (c1,¢2,)-
— Send {ct,}; to A; and receive a state st.
— Foreachi € [{]:
* Letr; = u; ® PRG(S)) @ m,.
* Letk; = (s, 72, Crs;).

221

— Oninputof'st, {m;};, {k:};, A, outputs a bit 1/0.
® HYbI'Id H;:

— Run the adversary A, to receive {m;}, fori € [4].
— Foreachi € [4:

* Sample s; < {0, 1} uniformly at random.

*

Sample #; < {0,1}” uniformly at random.

*

Let (crs;, ¢ ;) < SimEnc(1?, #,).

*

Sample ¢, ; <= {0,1}* uniformly at random.
* Letct, = (a4, ¢2.)-

— Send {ct;}; to A; and receive a state st.

— Foreachi € [4:
* Letr; = u; ® PRG(ca; @ Ext(c1s35:)) ® m.
* Letk; = (s, 7s, Crs;).

— Oninput of st, {m;,},, {k;}:, A, outputs a bit 1/0.
® Hybrld Hy:

— Run the adversary A, to receive {m,}, fori € [¢].
— Foreachi € [
* Sample s; < {0, 1} uniformly at random.

* Sample #; < {0,1}” uniformly at random.

222

x Let (crs;,c,) + SimEnc(1, #;).
* Sample ¢, ; < {0,1}* uniformly at random.
* Letct, = (a4, c2.)-
— Send {ct;}; to A; and receive a state st.
— Run the simulator for the multi-instance randomness extractor to get a set of
indices 7 C [¢] with |I| > fz. Foreach: € [¢]:
* If7 € Lletr; = u; ® PRG(cy; ® v;) @ m, where v; is a uniformly sampled
w-bit string.
* Ifi & Iletr; = u; & PRG(co; & Ext(c15:)) © m.
* Letk; = (s;,7;, Crs;).
— Oninputof'st, {m;};, {k:}, A, outputs a bit 1/0.
* Hybrid Hs:
— Run the adversary A, toreceive {m, }; for7 € [¢]. Discard {m;}, withoutlooking
atit.
— Foreachi € [{]:
* Sample s; < {0, 1} uniformly at random.
* Sample #; <— {0,1}” uniformly at random.
* Let (crs;, 1) < SimEnc(1Y, #;).
* Sample ¢, ; <= {0,1}* uniformly at random.
* Letct, = (a5, ¢2,)-
— Send {ct;}, to A, and receive a state st.

223

— Run the simulator for the multi-instance randomness extractor to get a set of
indices 7 C [¢] with || > [¢. Submit the set [#]\Z, and receive the correspond-
ing messages {2, };¢;. For each 7 € [¢]:

* If 7 € I, sample a uniform ; <— {0,1}".
* Ifi & Lletr; = u; ® PRG(cr; ® Ext(c15:)) © m.
* Letk; = (s;, 72, Crs;).

— Oninputof st, {m;};, {k:};, A, outputs a bit 1/0.

ProoFr oF HYBRID ARGUMENTS

Lemma 6.5.3. If Code = (Enc, Dec) has 3'-HILL-entropy, then no PPT adversary can

distinguish between Hy and Hy with non-negligible probability.

Proof. The only difference between H, and H; is that in Hy, crs; is sampled uniformly ran-
dom and ¢, + Code.Ences,(1*, PRG(s)) & 7; & m;), while in H,, we get (crs;, ¢ ;)
SimEnc(1*, PRG(s}) @ r; & m,). By the 3’-HILL-entropy, the crs,; and ¢; ; in H; are compu-
tationally indistinguishable from the ones in /. Hence, no PPT adversary can distinguish

between H and H; with non-negligible probability. O

Lemma 6.5.4. No adversary can distinguish between Hy and H, with non-negligible proba-

bility.

Proof. Here we are just changing the ways the variables are sampled. In H;, we sample a
uniform 7; and compute #; = PRG(s) & 7; & m,, while in H, we sample a uniform #,, and
then compute , = PRG(s)) @ #; @ m,. These two ways of sampling are equivalent, and

hence no adversary can distinguish between A, and A, with non-negligible probability. [

224

Lemma 6.5.5. No adversary can distinguish between H, and Hy with non-negligible proba-

bility.

Proof. This step is similar to the previous one, another change of variables. In /,, we sample
a uniform s, and compute ¢, ; = 5. @ Ext(cy;;5;), while in A, we sample a uniform ¢, ; and
computes; = ¢ ;B Ext(cy ;;5;). These are equivalent and hence no adversary can distinguish.

]

Lemma 6.5.6. If Code = (Enc, Dec) is a “good” HILL-entropic encoding with [3'-HILL-

entropy, and Ext : {0,1}* x {0,1} — {0,1}* isa (¢, o, B, €)-multi-instance randomness

_S

extractor with n = oy

+ poly(\), then no adversary can distinguish between Hy and Hy

with non-negligible probability.

Proof. By the f’-HILL-entropy and the goodness of the encoding scheme, H (1 4|crs;) >
B'(A\, n) = n(1—o(1))—poly(X). Withall the¢; ’s combined, we have H ({c1 , }4/{crs;},) >
m(1—o0(1)) —tpoly(A). Then, by the fact that ¢; /s are sampled independent of the 72,’s and
lemma 2.1.1, Hoo ({c1 }il{crs; }i, {m:}ist) = Hoo({cri}:/{crs }i,st) > m(1—0(1)) — (1—
a)nt = « - tn. Therefore, we can invoke the multi-instance randomness extraction property

and have

(51,50 Ext(ess)y oo Ext(ensse) =e (51 ov50 21y - o0 Zy),

where Z;, = v; forall7 € I,and Z; = Ext(cy;s;) forall 7 ¢ I. Notice that in H3, we have
r; = u; ®PRG(cy, B Ext(c15;5,)) ®m;, and in Hy, we equivalently have r; = 2, PRG(c, ;@

Z;) & m,. The only difference is that in A, we have the Z;’s instead of the Ext(c; ;;5,)’s in Hj,

225

and these are indistinguishable by the extractor property. Hence, no adversary can distinguish

between H3 and H, with non-negligible probability. [l

Lemma 6.5.7. If PRG is a pseudorandom generator secure against non-uniform adversaries,

then no PPT adversary can distinguish between Hy and Hs with non-negligible probability.

Proof. First, notice that in Hy, for 7 € I, we compute 7; = u; & PRG(c2; & v;) @ m;, where
v; is a uniformly random string. This is equivalent as 7, = »; & PRG(v}) & m, where v/ is
a uniformly random string. So here we are running the PRG on a uniformly random seed.
Although we do need to run the zzefficient simulator for the multi-instance randomness ex-
tractor earlier, we can still replace the PRG output with random if the PRG is secure agaznst
non-uniform adversaries. Hence we have ; = u; ® u, ® m; where #; is a uniformly random
n-bit string, and this is just equivalent as having a uniformly random 7;, which is the exact case
in Hs. Therefore, no PPT adversary can distinguish between H; and Hs with non-negligible

probability. H

Theorem 6.5.2. IfExt : {0,1}* x {0,1}¢ — {0,1}* isa (¢, v, 3, €)-multi-instance ran-
domness extractor with n = (1+a)t + poly()), Code = (Enc, Dec) isa “good” HIL L-entropic

encoding with (3'-HILL-entropy, and PRG is a pseudorandom generator secure against non-

uniform adversaries, then Construction 6.5.2 is (t,1, (1 —)z, §)-MULT-SIM-CPA secure.

Proof. The lemmas above show a sequence of a polynomial number of hybrid experiments
where no PPT adversary can distinguish one from the next with non-negligible probability.
Notice that the first hybrid H; corresponds to the real mode experiment of multi-user secu-

rity, and the last hybrid Hs corresponds to the ideal mode one. The simulation-based security

follows. [

226

6.5.3 DEALING WITH MULTIPLE MESSAGES PER USER

Above we have showed MULT-SIM-CPA security for SKE schemes where the number of
messages per user ¢ is equal to 1. Here, we show how we can generically lift a SKE scheme with
single-message-per-user MULT-SIM-CPA security to multiple-messages-per-user MULT-SIM-
CPA security.

Construction 6.5.3. Let A\, S be security parameters. Given SKE = (Gen, Enc, Dec) a
(n,1,4,8)-MULT-SIM-CPA secure SKE with key space {0,1}" * and F a class of l-wise in-

dependent functions with range {0,1}", we construct I1 = (Gen, Enc, Dec) as follows.
* Gen(1*, 15): Sample a random function f < F. Output k = f.

* Enc(k = fim) : Sample a short random string r with |r| = polylog({), compute
k' = fir), and get c < SKE.Enc(k', m). Output ct = (r,¢).

* Dec(k = f,ct = (r,¢)) : Compute k' = f(r), and output m <— SKE.Dec(¥',¢).

Correctness should be easy to verify given the correctness of the underlying SKE scheme

and the deterministic property of the {-wise independent functions.

Lemma 6.5.8. If SKE 75 2 (1,1, ¢4, S)-MULT-SIM-CPA secure SKE with key space {0,1}”
and F is a class of l-wise independent functions with range {0,1}", then Construction 6.5.3 is

(n/,¢,q,S —n - polylog(¢))-MULT-SIM-CPA secure.

Proof. We prove this through areduction. We show thatif thereisanadversary A = (A;, A,)
that breaks the (n/¢, ¢, 4,5 — 1 - polylog(¢))-MULT-SIM-CPA security of II, then we can

"Here we assume SKE’s keys are uniformly random #-bit strings. This is without loss of generality since
we can always take the key to be the random coins for Gen.

227

construct an adversary A" = (Aj, A}) that breaks the (7,1, ¢, 5)-MULT-SIM-CPA security
of SKE. A" = (A{, A)) works as follows:

* Ajf: First, run A; to obtain a list of message queries {72, }ie[n/4 e[Then, let m] =
M(:/0)41,((i—1) mod)41 TOr 7 € [n]. Notice that here we are essentially flattening the

list of messages. Submit the list {72} }c[;) and receive {ct;};c[;. Reconstruct ct;; =

/

(72, Ct1).0q;

)fori € [p/f] andj € [{], where 7;; is a uniformly random string
sampled from {0, 1}P°¥'°6(®), Notice that the 7;;’s have no collisions under the same
¢ with overwhelming probability. Send the list of ciphertexts {ct;;},; back to A; and

receive a state st. Output the state st’ = (st, {7;,},). The size of the state s |st| 47 -

polylog(¢) < .S —n - polylog(¢) + 7 - polylog(¢) = S.

o Aj: First receive st’ = (st, {r;;}:,), {7 }icpy)> 1% }icpm from the challenger / simula-

tor. Reorganize m;; = my for7 € [n/¢] and; € [(]. Construct k;, as an {-wise

i—1)-L+j

independent function f; s.t. forall7 € [n/¢] and; € [0], fi(r;;) = K, Send

(i—1)-l+5"

st, {m;}icm/a e, 1k: = fitiem/g to Az and receive a bit . Output &.

Notice that A’ perfectly simulates the view for A. If A says it is in the real mode, this means
the ciphertexts are faithful encryptions of the message queries, and hence A’ should be in

the real mode as well, and vice versa. Therefore, construction 6.5.3 is (n/(, ¢, 4,5 — n -

polylog(£))-MULT-SIM-CPA secure. 0

6.6 PusLIiCc KEY INCOMPRESSIBLE ENCRYPTION

Here we explore multi-user security of incompressible Public Key Encryptions (PKEs), con-

sidering constructions from “>*’. Unlike the SKE setting, where we can generically lift single-

228

ciphertext-per-user security to multi-ciphertext-per-user security, here we show how to ob-

tain multi-ciphertext security by modifying each construction specifically.

6.6.1 Low RATE INCOMPRESSIBLE PKE

For low rate incompressible PKE, we show that the construction from“” is MULT-SIM-CPA
secure by plugging in the multi-instance randomness extractor. Then, we upgrade the con-
struction to have multi-ciphertext-per-user security by upgrading the functionality of the

underlying functional encryption scheme.

CONSTRUCTION BY "°.

We recall the low rate incompressible PKE construction by, with the multi-instance ran-

domness extractor plugged in.

Construction 6.6.1 (*°). Given FE = (Setup, KeyGen, Enc, Dec) a single-key selectively se-
cure functional encryption scheme and a (t, o, B, €)-multi-instance randomness extractor Ext :
{0,1}* x {0,1} — {0,1}*, withd = poly(\), w = poly(\) and n = (lf—Sa)t + poly(A),

the construction 11 = (Gen, Enc, Dec) with message space {0, 1}* works as follows:

* Gen(1*,15): First, obtain (FE.mpk, FE.msk) <« FE.Setup(1*). Then, generate the

secret key for the following function f, with a bardcoded v € {0,1}41:

s ifflag =0
fo(s = (s, pad), flag) = .
s@v ifflag=1

Output pk = FE.mpk and sk = FE.sk;, < FE.KeyGen(FE.msk, £,).

229

* Enc(pk,m): Sample a random tuple s = (s, pad) where s € {0,1}* is used as a seed
for the extractor and pad € {0,1}" is used as a one-time pad. The ciphertext consists of
three parts: FE.ct <— FE.Enc(FE.mpk, (s/,0)), a long randomness R € {0,1}", and

z = Ext(R;s) @ pad @ m.

* Dec(sk,ct = (FE.ct, R, 2)): First, obtain s <— FE.Dec(FE.sk,, FE.ct), and then use

the seed s to compute Ext(R;s) @ z & pad to recover m.
The correctness follows from the original construction.

Theorem 6.6.1. If FE is a single-key selectively secure functional encryption scheme and Ext
{0,1}7 x{0,1} — {0,1}* 454 (¢, o0, B, €)-multi-instance randomness extractor with d, w =
poly(\) and n = (lf_Sa)t + poly (), then Construction 6.6.1 is (¢,1, (1 —)¢, S)-MULT-SIM-
CPA secure.

We prove Theorem 6.6.1 through a sequence of hybrids, starting with /| being the real
mode experiment and ending with /A3 being the ideal mode experiment. The proofs of the
hybrid arguments are identical to those from“” (except for the extractor step, which is anal-

ogous to the proof of Lemma 6.5.2), so we will not reproduce them here and instead point

the reader to the original ** paper.
SEQUENCE oF HYBRIDS
® HYbI'Id Hy:

— Foreach 7 € [f], obtain (FE.mpk,, FE.msk,;) < FE.Setup(1*) and sample a
uniform random v; < {0,1}***. Set pk, = FE.mpk, and sk; = FE.sk; <
FE.KeyGen(FE.msk;, f;,).

230

— Send {pk;}; to the adversary .A; and receive {m;,}, fori € [7].
— Foreachi € [4:

* Sample s; < {0, 1} uniformly at random.

*

Sample pad, <— {0,1}* uniformly at random.

* Lets, = (5, pad,).

*

Let FE.ct, < FE.Enc(FE.mpk,, (s, 0)).

*

Sample R; <— {0,1}” uniformly at random.
* Letz; = Ext(R;;s;) @ pad, ® m,.
* Letct; = (FE.ct;, R}, 2;).

— Send {ct,}; to A; and receive a state st.

— Oninput of st, {m;};, {(pk;, sk;) }, A, outputs a bit 1/0.
® HYbrld H;:

— For each 7/ € [f], obtain (FE.mpk,, FE.msk;) <+ FE.Setup(1*) and sample a
uniform random v; < {0,1}%**. Set pk;, = FE.mpk, and sk, = FE.sky, «
FE.KeyGen(FE.msk;, 7).

— Send {pk,}, to the adversary A; and receive {m;,}, for 7 € [¢].
— Foreachi € [¢:

* Sample s; < {0, 1} uniformly at random.

* Sample pad, <— {0,1}* uniformly at random.

* Lets, = (5, pad,).

231

*

Let FE.ct, <— FE.Enc(FE.mpk;, (s: ® v;,1)).

*

Sample R, <— {0,1}” uniformly at random.

*

Letz; = Ext(R;;s;) @ pad; & m,.

*

Letct; = (FE.ct;, R;, z,).
— Send {ct,}; to A; and receive a state st.
— Oninputof st, {m,},, {(pk;, sk,)},, A, outputs a bit 1/0.
* Hybrid A>:
— Foreach 7 € [t], obtain (FE.mpk,, FE.msk;) <— FE.Setup(1*).
Set only pk; = FE.mpk,.
— Send {pk;}; to the adversary .A; and receive {m;,}, fori € [#].
— Foreachi € [4:
« Sample #; < {0,1}™* uniformly at random.
* Let FE.ct, < FE.Enc(FE.mpk,, (#;,1)).
* Sample R; <— {0,1}” uniformly at random.
* Sample z; < {0, 1} uniformly at random.
* Letct; = (FE.ct;, R}, 2;).
— Send {ct,}; to A; and receive a state st.
— Foreachi € [4:
*« Sample s; < {0, 1} uniformly at random.

* Let pad; = Ext(R;;s;) ® z; D m,.

232

* Lets: = (s, pad,) and compute v; = 5. @ #,.
* Obtain sk; = FE.sk;, < FE.KeyGen(FE.msk;,f;,).

— Oninputof st, {m,},, {(pk;, sk;) }, A, outputs a bit 1/0.

* Hybrid Hs:

— Foreach 7 € [#], obtain (FE.mpk,, FE.msk;) < FE.Setup(1*). Set only pk, =
FE.mpk,.

— Send {pk;}; to the adversary A; and receive {m,}, for 7 € [¢]. Discard {m,};
without looking at it.

— Foreachi € [4]:

* Sample #; < {0,1}*™* uniformly at random.
* Let FE.ct, <~ FE.Enc(FE.mpk,, (#;,1)).

* Sample R, <— {0, 1}” uniformly at random.

* Sample z; < {0, 1} uniformly at random.

* Letct; = (FE.ct;, R}, 2;).

— Send {ct;}; to A, and receive a state st.

— Run the simulator for the multi-instance randomness extractor to get a set of
indices 7 C [¢] with || > (. Submit the set [#]\/, and receive the corresponding
messages {72, }i¢r. For each 7 € [¢]:

* Sample s; < {0, 1} uniformly at random.
* If 7 € I, sample pad, <— {0,1}" uniformly at random.

* If7 & I, let pad, = Ext(R;;s;) @ z; D m,.

233

* Lets. = (5, pad,) and compute v; = 5. ® #,.
* Obrtain sk; = FE.sk; < FE.KeyGen(FE.msk;,f,,).

— Oninputof st, {m,},, {(pk;, sk;) }, A, outputs a bit 1/0.

UPGRADING TO MULTIPLE CIPHERTEXTS PER USER.

Additionally, We show that the constructions from *” can be upgraded to have multi-ciphertext-
per-user security. Essentially, all we need is to upgrade the functionality of the underlying
functional encryption scheme to work for a slightly more generalized class of functions. We
will need functions f{,1,(s, flag) = 5 @ vpag for hard coded values vy, . . ., vy and a special
vy being the all 0 string. Notice that the original GWZ construction*” can be viewed as us-
ing functions that are a special case where £ = 1. We show how to construct FE schemes
for such fy,;, functions from plain PKE below. With this new class of functions, we can
achieve (2, /¢, (1 — 3)¢z,S)-MULT-SIM-CPA security. In the hybrid proof where we replace
FE.Enc(FE.mpk, (s, 0)) with FE.Enc(FE.mpk, (s @ v,1)), now for the j-th message query
for the 7-th user where 7 € [¢] and j € [{], we replace FE.Enc(FE.mpk;, (s}, 0)) with

FE.Enc(FE.mpk,, (s} ; @ v;,/)). The rest of the hybrid proof follows analogously.

INSTANTIATING FE FOR f7,,}, FUNCTIONS.

Here we show how to construct the FE scheme for the new class of functions that we need to
upgrade construction 6.6.1 to have multi-ciphertext-per-user security. We only need plain
PKE for the construction. Recall that our functions f{,,3, have the form fi,3,(s, flag) =

5 @ vgag, where flag € {0,1,...,(}.

234

Construction 6.6.2. Let (Gen', Enc’, Dec’) be a public key encryption scheme. Our scheme

FE = (Setup, KeyGen, Enc, Dec) for a single message bit s is defined as:

Setup(1*): Fori € {0,1,...,n},b € {0,1}, run (pk;,, sk;s) <— Gen'(1*). Output

(mpk = {pkl-J,},-,b , msk = {Skz',b}z}b)-

KeyGen(msk, f1,,1,) = {ski., }» Notice that we hardcode vy = 0.

Enc(mpk, (5, flag)): Sample uniformly random bits s© s s sz 50 @ 5O @
@ = Fori € {0,1,...,n}\{flag}, & € {0,1}, computec;;, = Enc'(pkl-vb,s(")).

Forb € {0,1}, compute crag), = Enc/(pkl-,b,s(ﬂag) @ b). Outputc = (¢;p);

Dec(skyy,, ¢): Output x = 29 &« @ - - - & 2" where x) = Dec' (s, i)

For correctness, note that for 7 # flag, x) = s, and that x(f28) = ,(flag) g Vflag>

thereforex = 50 @ sV @ ... @ s @ Uflag = S D Vflag-

Lemma 6.6.1. If (Gen’,Enc’, Dec’) is a CPA secure public key encryption scheme, then Con-

struction 6.6.2 is single key semi-adaptively secure for the functions fy,..

Proof. Consider a single key semi-adaptive adversary for Construction 6.6.2. Let my =
(50, flagy), m1 = (51, flag,) be the challenge messages. For a fixed flag, /7,3, is injective. There-
fore, if my # my, it must be that flag, # flag,. Then if the adversary’s secret key query is on
f{o},» we must have 5o © vf55, = 51 D vfiag,. Therefore the ¢;,,’s always encrypt an instance
of a secret share of the same value 5o @ vfag, = 51 © vpag,. Hence, for7 & {flag, flag, },
be {0,1}, ¢, ;s follow the same distribution in both cases and do not depend on the chal-
lenge bit 5. The only dependence on the challenge bit & is that cqg,,0 always encrypts the

opposite bit that ¢qag, 1 encrypts, whereas chag, , 0 and cfiag, , 1 always encrypt the same bit.

235

However, since the adversary never gets to see the secret key skfiag,,1-,,,> a simple hybrid

argument shows that flipping the challenge bit is indistinguishable.]

6.6.2 RATE-1 INCOMPRESSIBLE PKE

For rate-1 incompressible PKE, we first show that we can easily plug in the multi-instance
randomness extractor to the construction by Guan, Wichs and Zhandry*®. We also provide
a generalization on the construction by Branco, Déttling and Dujmovic ™’ using a Key En-
capsulation Mechanism (KEM) with a special non-committing property. For both construc-

tions, we show how to adapt them to allow for multi-ciphertext-per-user security.

CONSTRUCTION BY GUAN ET AL.

We first reproduce the rate-1 PKE construction from °, with the multi-instance randomness

extractors plugged in.

Construction 6.6.3 (). Given FE = (Setup, KeyGen, Enc, Dec) a rate-1 functional en-
cryption scheme satisfying single-key semi-adaptive security, Ext : {0,1}"x{0,1}¥ — {0,1}*
a (t, a, B, €)-multi-instance randomness extractor with d, w = poly(\), n = (1%04): +poly(A)
and PRG : {0,1}* — {0,1}" a secure PRG against non-uniform adversaries, the construc-

tion I1 = (Gen, Enc, Dec) for message space {0, 1}" works as follows:

* Gen(1*,15): First, obtain (FE.mpk, FE.msk) <« FE.Setup(1*). Then, generate the

secret key for the following function f, ; with a hardcoded large random pad v € {0,1}"

236

and a small extractor seed s € {0,1}%:

x ifflag =0
Jos(x, flag) = .
PRG(Extract(x;s)) ®v ifflag =1

Output pk = FE.mpk and sk = FE.sk;, < FE.KeyGen(FE.msk, £,).

* Enc(pk, m): The ciphertext is simply an encryption of (m, 0) using the underlying FE
scheme, i.e. FE.ct <— FE.Enc(FE.mpk, (m,0)).

* Dec(sk, ct): Decryption also correspondsto FE decryption. The output is FE.Dec(FE.skg, ,

ct) = f,,(m,0) = m as desired.

Correctness easily follows from the original construction. The rate of the construction is
the rate of the underlying FE multiplied by -%+. If the FE has rate (1—o(1)), the construction

has rate (1 — o(1)) as desired.

Theorem 6.6.2. If FE = (Setup, KeyGen, Enc, Dec) is a single-key semi-adaptively secure
functional encryption scheme, Ext = {0,1}* x {0,1}* — {0,1}* s a (¢, v, B3, €)-multi-
instance randomness extractor, with d,w = poly(\) and n = ﬁ‘ + poly(A), and PRG :

{0,1}* — {0,1}" is a PRG secure against non-uniform adversaries, then Construction 6.6.3

is (2,1, (1 = B)t,8)-MULT-SIM-CPA secure.

We prove Theorem 6.6.2 through a sequence of hybrids, starting with /| being the real
mode experiment where we play the role of the challenger and ending with Hy being the
ideal mode experiment where we play the role of the simulator. For the proofs of each hy-

brid argument, see the original ** paper, since they are identical except for the extractor step

237

(analogous to Lemma 6.5.2) and the PRG against non-uniform attackers step (analogous to

Lemma 6.5.7).

SEQUENCE OF HYBRIDS
® HYbrld H():

For each 7 € [¢], obtain (FE.mpk;, FE.msk;) < FE.Setup(1*) and sample

uniformly random »; < {0,1}" and s; + {0,1}%. Set pk, = FE.mpk, and
sk; = FE.sk;, <« FE.KeyGen(FE.msk;,f,).

Send {pk, }; to the adversary A; and receive {m;}, fori € [#].

Foreach 7 € [¢], let ct; = FE.ct; + FE.Enc(FE.mpk,, (m;,0)).

Send {ct;}, to A; and receive a state st.

On input of st, {m;};, {(pk;, sk;) }, A, outputs a bit 1/0.
® HYbrld H;:

For each 7 € [#], obtain (FE.mpk,, FE.msk;) < FE.Setup(1*).

Only set pk, = FE.mpk; for now.

Send {pk; }; to the adversary A; and receive {m;}, fori € [f].

Foreach 7 € [¢], let ct; = FE.ct; - FE.Enc(FE.mpk,, (m,,0)).

Send {ct;}, to A, and receive a state st.

Foreach7 € [¢]:

* Sample a uniformly random s; - {0, 1}<.

238

* Sample a uniformly random #; <— {0,1}”, and let v; = u; & m,.
* Letsk, = FE.sk;, < FE.KeyGen(FE.msk;,f,,).

— Oninputof st, {m;};, {(pk;, sk;) };, A, outputs a bit 1/0.
® HYbI'Id H;:

For each 7 € [¢], obtain (FE.mpk;, FE.msk,) < FE.Setup(1*). Only set pk, =

FE.mpk, for now.

Send {pk,}; to the adversary A; and receive {m;}, for 7 € [#].

Foreach 7 € [¢], let ct; = FE.ct; + FE.Enc(FE.mpk,, (m;,0)).

Send {ct;}, to A; and receive a state st.

Foreach7 € [4]:
* Sample a uniformly random 5, < {0, 1}%.
* Sampleauniformly random PRGkey £; <— {0,1}*,andletv; =PRG(&;)®m,.

* Letsk, = FE.sk;, < FE.KeyGen(FE.msk;,f,,).

On input of st, {m;};, {(pk;, sk;) }, A, outputs a bit 1/0.
° HYbI'Id H;:

— Foreach i € [¢], obtain (FE.mpk;, FE.msk,) < FE.Setup(1*). Only set pk, =
FE.mpk, for now.

— Send {pk,}, to the adversary A; and receive {m;,}, for7 € [¢].

— Foreach? € [¢], sampleauniformly random R, - {0,1}”,andletct;, = FE.ct; <

FE.Enc(FE.mpk;, (m;,0)).

239

— Send {ct,}; to A; and receive a state st.
— Foreachi € [4:
* Sample a uniformly random s; <— {0, 1}<.
* Letk; = Ext(R;s;), and let v; = PRG(k;) @ m;.
* Letsk; = FE.sk;, < FE.KeyGen(FE.msk;,f, ;).

— Oninputof st, {m,};, {(pk;, sk;) }, A, outputs a bit 1/0.

° Hybl‘ld H4:

For each 7 € [¢], obtain (FE.mpk,, FE.msk;) <— FE.Setup(1*). Only set pk; =

FE.mpk, for now.

Send {pk,}, to the adversary A; and receive {m;,}, for7 € [¢].

For each 7 € [¢], sample a uniformly random R; < {0,1}”, and let ct; =

FE.ct, «+ FE.Enc(FE.mpk,, (R;,1)).

Send {ct;}, to \A; and receive a state st.

Foreach7 € [¢]:

* Sample a uniformly random s; <— {0, 1}<.
* Let k; = Ext(R;;s;), and let v, = PRG(k;) @ m,.

* Letsk, = FE.sk;, < FE.KeyGen(FE.msk;,f, ;).

On input of st, {m;};, {(pk;, sk;) }, A, outputs a bit 1/0.

* Hybrld Hs:

240

— Foreach 7 € [1], obtain (FE.mpk;, FE.msk;) < FE.Setup(1*). Only set pk, =

FE.mpk; for now.
— Send {pk;}; to the adversary .A; and receive {m,}, fori € [7].

— For each 7 € [¢], sample a uniformly random R, < {0,1}”, and let ct; =

FE.ct, < FE.Enc(FE.mpk,, (R;,0)).
— Send {ct;}, to A, and receive a state st.

— Run the simulator for the multi-instance randomness extractor to get a set of

indices 7 C [¢] with |I| > [3¢. Foreach 7 € [{]:

* Sample a uniformly random 5; < {0, 1}%.

*

If 7 € I, sample a uniformly random PRG key k; <— {0,1}*, and let v; =
PRG(k;) & m,.

*

If i & I, let k; = Ext(R;;5;), and let v; = PRG(k,) & m;,.

*

Letsk; = FE.sk;, < FE.KeyGen(FE.msk;,f,).
— Oninputof'st, {m,},, {(pk;, sk,)},, A, outputs a bit 1/0.
* Hybrid Hy:
— Foreach 7 € [¢], obtain (FE.mpk;, FE.msk,) < FE.Setup(1*). Only set pk, =
FE.mpk, for now.

— Send {pk;}; to the adversary A; and receive {m,}, for 7 € [¢]. Discard {m,},

without looking at it.

— For each 7 € [¢], sample a uniformly random R; < {0,1}”, and let ct; =

FE.ct, < FE.Enc(FE.mpk,, (R;,0)).

241

— Send {ct,}; to A; and receive a state st.

— Run the simulator for the multi-instance randomness extractor to get a set of
indices 7 C [¢] with || > [¢. Submit the set [#]\Z, and receive the correspond-
ing messages {2, } ;. For each 7 € [7]:

* Sample a uniformly random s; < {0, 1}<.
* If 7 € I, sample a uniformly random v; <— {0,1}".
* If 7 & I, let k; = Ext(R;;5;), and let v, = PRG(k;) @ m;.

* Letsk; = FE.sk;, . < FE.KeyGen(FE.msk;,f;,).

— Oninputof st, {m,},, {(pk;, sk;) }, A, outputs a bit 1/0.

UPGRADING TO MULTIPLE CIPHERTEXTS PER USER.

Upgrading Construction 6.6.3 to multi-ciphertext-per-user security is rather straightforward.
Since the construction already requires a full functionality FE scheme, we just modify the
class of functions that the underlying FE scheme uses, without introducing any new assump-
tions. Specifically, we use the class of functions f{,) (., with hard-coded values v; € {0,1}"

ands; € {0,1}* forj € [(] that behaves as follows:

f{vj}ﬁ{y}j(x, f|ag) — |
PRG(Extract(x; srag)) @ vrag if flag € [(]

This gives us (¢, ¢, (1 — a) ¢z, S)-MULT-SIM-CPA security. Notice that this modification
does slightly harm the rate of the scheme, since the flag is now log(¢) bits instead of one bit,

but asymptotically the rate is still (1 — o(1)).

242

The hybrid proof works analogously to that of Theorem 6.6.2, except that in the hybrid
proof where we swap the FE encryption of (2, 0) to (R, 1), we now swap from (7, 0) to

(R;,7) for the j-th ciphertext from the /-th user.

GENERALIZATION OF CONSTRUCTION BY BRANCO ET AL.

Branco etal.”* show how to lift a rate-1 incompressible SKE scheme to a rate-1 incompressible
PKE scheme using a Key Encapsulation Mechanism ** built from programmable Hash Proof
Systems (HPS) *>7*. Their construction satisfy CCAz2 security. We show that if we are to relax
the security notion to only CPA security, all we need for the lifting is a Key Encapsulation

Mechanism with a non-committing property, defined as follows.

Definition 6.6.1 (Key Encapsulation Mechanism **). Let X be the security parameters, a Key
Encapsulation Mechanism (KEM) is a tuple of algorithms 11 = (KeyGen, Encap, Decap)

that works as follow:

* KeyGen(1*,1%) — (pk, sk): The key generation algorithm takes as input the security
parameter and the desired symmetric key length Ly, outputs a pair of public key and

private key (pk, sk).

* Encap(pk) — (k,c): The encapsulation algorithm takes the public key pk, produces a

symmetric key k € {0,1}°*, and a header ¢ that encapsulates k.

* Decap(sk,c) — k: The decapsulation algorithm takes as input the private key sk and

a header ¢, and decapsulates the header to get the symmetric key k.

We require correctness of the KEM.

243

Definition 6.6.2 (Correctness). A key encapsulation mechanism KEM = (KeyGen, Encap,

Decap) is said to be correct if:

(pk,sk) < KeyGen(1*,1%)
Pr |k =k: (k7c) < Encap(pk) >1— negl()\)

k' < Decap(sk, c)

Definition 6.6.3 (Non-Committing). A key encapsulation mechanism KEM = (KeyGen,
Encap, Decap) issaid to be non-committing if there exists a pair of simularor algorithm (Simy, Sim,)
such that Simy (1, 1%%) outputs a simulated public key pK', a header ¢ and a state st with
|st| = poly(X, L), and for any given target key k' € {0,1}5%, Sim,(st, k') outputs the ran-

KeyGen

dom coins r and rE"eP. e require that if we run the key generation and encapsulation

algorithm using these random coins, we will get the desired pk',c, and F, i.c.:

pk’ = pk
> (pk,sk) < KeyGen(1*, 15#; yKeyGen) - o)
r| K =F : > 1—neg .
) (k,c) < Encap(pk; 7E"<2P)
=c

Kindly notice that by the correctness property, Decap(sk, ') — k.

This non-committing property allows us to commit to a public key and header first, but
then later able to reveal it as an encapsulation of an arbitrary symmetric key in the key space.
And it will be impossible to distinguish the simulated public key and header from the ones
we get from faithfully running KeyGen and Encap.

Using this non-committing KEM, we are able to construct rate-1 incompressible PKE

from rate-1 incompressible SKE, with multi-user security in mind. This is a generalization

244

of the construction by *°.

Construction 6.6.4 (Generalization of *°). Let N, S be security parameters. Given KEM =
(KeyGen, Encap, Decap) a non-commiting KEM and SKE = (Gen, Enc, Dec) a rate-1
incompressible SKE for message space {0,1}", we construct rate-1 incompressible PKE 11 =

(Gen, Enc, Dec) for message space {0, 1} as follows:

« Gen(1*,1%): First, run SKE.Gen (1%, 1%) to determine the required symmetric key length
L}, under security parameters X, S. Then run (pk,sk) < KEM.KeyGen(1*, 1) and

output (pk, sk).

* Enc(pk, m): First, run (k,cy) <— KEM.Encap(pk) to sample a symmetric key k, and
encapsulate it into a beader cy. Then compute ¢; <— SKE.Enc(k, m). The ciphertext is

the tuple (¢, c1).

* Dec(sk, ct = (co, ¢1)): First, decapsulate cy using sk to obtain k <— KEM.Decap(sk, ¢y),

and then use k to decrypt ¢; and get m < SKE.Dec(k, ¢1).

Correctness follows from the correctness of the underlying incompressible SKE and the
KEM scheme. In terms of the rate, to achieve a rate-1 incompressible PKE, we would require
the KEM to produce “short” headers, i.e. |¢o| = poly(\) independent of £, (notice that
L, = poly(\, z) and needs to be at least as large as 7). We can build such KEMs using various
efficient encapsulation techniques ' “*'°. With the short header and an incompressible SKE
with rate (1 — o(1)), the ciphertext length is /(1 — 0(1)) 4 poly(\), yielding an ideal rate of
(1 — o(1)) for the construction. However, these KEMs require long public keys, as opposed

to the short public keys in Construction 6.6.3.

245

For security, we prove that if the underlying SKE has MULT-SIM-CPA security, then
Construction 6.6.4 has MULT-SIM-CPA security as well.

Theorem 6.6.3. If KEM is a non-commiting KEM, and SKE is a (n,1, ¢, S)-MULT-SIM-
CPA secure SKE with message space {0, 1}", then Construction 6.6.4 is(n, 1, g, S—n-poly (A, z))-
MULT-SIM-CPA secure.

Proof. We prove this through areduction. We show thatif thereisan adversary A = (A;, A,)
that breaks the (1,1, 4,5 —n - poly (A, #))-MULT-SIM-CPA security of 11, then we can con-
struct an adversary A" = (A{, A}) that breaks the (1,1, ¢,.5)-MULT-SIM-CPA security of
SKE. A" = (A{, A}) works as follows:

* Aj: Use the security parameters A, S to determine the key length £, for the underlying
SKE". For each i € [n)], obtain (pk;, co,;, KEM.st;) - KEM.Sim;(1*,1%). Send
{pk,}; to A to get a list of message queries {m,};. Then, forward the list {m,}, to
the challenger / simulator and receive a list of ciphertexts {ct/};. Construct ct; =
(co,s, ct?), and send all {ct;}, to A, to receive a state st. Output the state st’ = (st,
{KEM.st,},). The size of the state is |st| 4+ 77 - poly(X, £;) < S —n-poly(A,) +1n-
poly(A,z) = S.

» A’: Firstreceivest’ = (st, {KEM.st;},), {m,};, {k;}, from the challenger / simulator.
rKeyGen

For each 7 € [1], run (7 %", /5"P) «— KEM.Sim,(KEM.st;, k;), and (pk;, sk;) <

KEM.KeyGen(1*, 1%¢; #<¥%*") Notice that pk, matches the pk; produced previously

by A{ due to the non-committing property of the KEM. Send st, {2, },, { (pk;, sk;) },

to A, and receive a bit b. Output .

p . . .
For the ease of syntax, we imagine the security parameters to be part of the public parameters always ac-
cessible to the adversary.

246

Notice that A’ perfectly simulates the view for A. If A says it is in the real mode interacting
with the challenger, this means the ciphertexts ct,’s are faithful encryptions of the message
queries m2,’s, i.e. Dec(sk;, ct;) = SKE.Dec(KEM.Decap(sk;, ¢y), ct.) = m; foralli € [n].
This implies that SKE.Dec(k;, ct.) = m;,and hence A’ is also in the real mode. The converse
also holds true. Therefore, construction 6.6.4is (1, 1, 4, S—n-poly(X, z))-MULT-SIM-CPA

secure. OJ

UPGRADING TO MULTIPLE CIPHERTEXTS PER USER.

Next we show how to upgrade Construction 6.6.4 to have multi-ciphertext-per-user security.

All we need is to upgrade the KEM to be (-strongly non-committing, defined as below.

Definition 6.6.4 (¢-Strongly Non-Committing). A key encapsulation mechanism KEM =
(KeyGen, Encap, Decap) is said to be (-strongly non-committing if there exists a pair of sim-
ulator algorithm (Simy, Sim,) such that Simy (1%, 1) outputs a simulated public key pk', a
set of simulated headers C' = {c},c,, ..., c,} and a state st with |st| = poly(\, Ly, (), and
for any given set of target keys K' = {k, k), ... k,} where k; € {0,1} forall i € [{],

KeyGen _Enca
ey 7 P

Sim,(st, K') outputs a set of random coin pairs { (r;) Ve We require that if we

run the key generation and encapsulation algorithm using the i-th pair of these random coins,

we will get the desired pK', ¢, and k), i.e. foralli € [(]:

pk’ = pk
(pk, sk) KeyGen(lA, 1£k; rifeyGen>
Pr| ki =k : 1 negl).
(k,c) + Encap(pk; rf”cap)
d=c

Kindly notice that by the correctness property, Decap(sk, ¢.) — .

247

We show how to construct ¢-strongly non-committing KEMs by composing plain non-
committing KEMs below.

To get multi-ciphertext security, we simply plug in the (-strongly non-committing KEM
in place of the plain non-committing KEM in construction 6.6.4. The resulting construction
has (n/0,¢,9,S — n - poly(X, n,£))-MULT-SIM-CPA security. The security proof follows

analogous from that of Theorem 6.6.3.

INSTANTIATING ¢-STRONGLY NON-CoMMITTING KEM.

We give a simple construction of {-strongly non-committing KEM by composing 2/ plain

non-committing KEMs.

Construction 6.6.5. Let KEM;, KEM,, ..., KEM, be n = 20 instances of non-committing

KEMs, we construct an U-strongly non-committing KEM 11 = (KeyGen, Encap, Decap) as
follows:

* KeyGen(1*,14+): Foreach i € [n), run (pk;, sk,) +— KEM;.KeyGen(1*, 1%+). Publish

pk = {pk;}; and sk = {sk;}.

* Encap(pk): First sample a random subser I C [n]. Then forall i € I, get (k;,c;) <
KEM;,.Encap(pk;). Output k = @, ki, and c = (I, {c},).

* Decap(sk, ¢): First parsec = (1,{c;};). Then foralli € I, get k; <— KEM,.Decap(sk;,

¢;). Output b = @, k-

Correctness is trivial given the correctness of the underlying KEMs. The public key, pri-

vate key and header sizes all blow up by a factor of 7.

248

Lemma 6.6.2. I[fKEM;, KEM,, ..., KEM,, are non-committing KEMs, then construction 6.6.5

is U-strongly non-committing.
Proof. We show how to construct the pair of simulator algorithms (Sim;, Sim,) for I1:

* Sim;(1*,1%): Forall7 € [n], get (pk,c,st;) < KEM,.Sim;(1*,1%). Forallj €
(], sample a random subset I; C [z], and let & = (I;, {c/};e;). Output pk’ =

{Pk}iet: C' = {G}eia, and st = ({Z}jeqn. {sti}iepn)-

* Sim,(st, K" = {k}};cjq): First, parse {I;}jciq as a £ X n bit matrix M. My g = 1if
and only if 3 € I,,. Solve for the vector v = (v}, v,, . . .,v,) where each v, € {0, 1}~

such that

M-v' = (K, k... k)"

Assume for now that there exists a satisfying solution for v. Notice that this means for
allj € [4], kjl- = @Z’EI} v, 1e. vgivesan assignment of keys for KEM;, KEM,, .. ., KEM,,

: . KeyGen E
that satisfies the target key set K’ for II. Now we just to run (r; <", ") «

KEM,.Sim;(st;, v;) forall 7 € [x]. Output A) P

z 101

By the non-committing property of the underlying KEMs, it is easy to see that these random
coins yield the simulated public keys, headers and the target keys.

The only remaining thing to show is that M - v = (K], &, ..., k)" has a satisfying
solution for v. Notice that v has atleast one solution if M has rank £. Having rank £ essentially
says that all the rows of M are linearly independent. This ensures that the linear equation
system generated by M - v = (k{,&,,..., k)" is consistent. Notice having rank ¢ also
means that M has at least £ non-zero columns. This gives us a consistent linear equation

system with £ equations and at least £ variables, which is guaranteed to have a (not necessarily

249

unique) solution. Notice that if we choose # = 2¢, then M is an ¢ x 2{ matrix, which has

full rank (rank ¢) with overwhelming probability 1 — O(27). O

6.7 INCOMPRESSIBLE ENCRYPTION IN THE RANDOM ORACLE MODEL

6.7.1 RATE-1 INCOMPRESSIBLE SKE FROM RANDOM ORACLES

We show how to build rate-1 incompressible SKE in the random oracle model.

Construction 6.7.1. Let \, S be security parameters. Given G = {0, 1}POVN x {0, 1}Pov() —
{0,137, H : {0,1}PYX) % {0,1}* — {0,1}PYN two hash functions modelled as random

oracles, we construct 11 = (Gen, Enc, Dec) for message space {0,1}" as follows:
* Gen(1*,15): Sample a uniformly random key k € {0,1}P°YN. Output k.

o Enc(k, m): First, choose a random r < {0,1}PYN. Ler d = G(k,7) © m. Then let

¢ = H(k,d) ® r. Output ct = (c,d).
* Dec(k, ct = (c,d)): First, Compute r = H(k,d) ® ¢, and then m = G(k,r) & d.

Correctness is easy to verify given that G and H are deterministic. The ciphertext has
length |c| + |d| = n + poly(\), which gives an ideal rate of (1 — o(1)). The secret key size is
poly(A), which is also optimal.

The construction has (2%, 2%, 2,.5)-MULT-SIM-CPA security. Notice that this security

holds for an unbounded (exponential) number of ciphertexts per user.

Theorem 6.7.1. If G, H are hash functions modelled as random oracles, then construction 6.7.1

is (22,27, f, S)-MULT-SIM-CPA secure.

Proof. We prove this by limiting the adversary’s queries to the random oracles G and H through

several steps. First, recall the challenger’s behavior in the real mode experiment:
* For7 € [2%], sample a uniform &, € {0, 1}PVO.
* Receive a list of message queries {72;,}; i) from A,.

* Foreachs,j € [2]:

Sample a uniformly random 7;; < {0, 1}PovN),

Letd;; = Gk, 7:;) ® my;.

Let Cz',j = H(/CZ'7 le> @ VZ‘J'.

Letct;; = (¢, dsj).

* Send {ct; J}l' ; to A; and receive a state st of size at most S.
* Oninputof'st, {m;;}.;, {k:}: Az outputs a bit 1/0.
Now we limit the adversary’s queries to G and A.

1. Notice that A, can never query the random oracles G or H using some k;, since the £,’s
remain hidden from A;. The probability of A; guessing a k; correctly is exponentially

small.

2. A, can only query G(k;, 7;;) after querying H(k;,d; ;). This is because if A, has not
queried H(k;,d;) yet, then r;; = H(k;,d;;) @ c;; is just a uniformly random A-bit
string to the adversary, and the probability of guessing it correctly is exponentially

small.

3. Aj can make at most S/n queries to H(k;, d;;) with different (7,) pairs. Notice that
the probability of guessing a d,; correctly is exponentially small. So in order to suc-
cessfully query H(k;, d, ;), d;; must be stored in st. But each d;; is 7 bits, and |st| < S,
so A, can recover at most /7 such d;’s and hence make at most /7 valid queries to

H.
With these limitations in mind, the simulator for the ideal mode experiment works as follow:
* Receive a list of message queries {72}, i, from A;. Discard without looking at it.
* Foreachs,j € [2]:

— Sample a uniformly random ¢;; < {0, 1}P°¥™),
— Sample a uniformly random d;; < {0,1}".

_ Let CtlJ — (Cl'lf? dl-d-).

Send {ct;;},; to A; and receive a state st of size at most S.

Sample uniformly random keys &, € {0, 1}PoV™)

* A, receives st, {m; Z,-}Z-J-, {ki}i.

Whenever A, queries the random oracle on H(k;, d;;), submit a query for message
m;;. There willbe at most.S, /n such queries. Program H(k;, d; J) to outputa uniformly

random string 7/ ; «— {0, 13PN and program G(k;, 7D ey) = mi; S d;y

* A, outputs a bit 1/0.

Notice that this simulator queries a subset of messages that has size at most .S/ z. Itis easy
to see that a PPT adversary cannot distinguish between the challenger and the simulator. For
a pair of index (7, 7) that A has queried H(k;, d;;), we have ct;; = (c;;, d;;) = (H(k:, d;;) ©
7ij> Gk, 7)) ®m;) is justa faithful encryption of 72, j, which is the same thing the challenger
in the real mode would output. For a pair of index (7, /) that A has not queried H(k;,d;;),
then by limitation 2 above, A has also not queried G(k;, ;7). Here, m;; is essentially masked
with a random string, so the adversary cannot tell between an encryption of 72; jand arandom

ciphertext, i.e. the challenger output and the simulator output. O

6.7.2 RATE-1 INCOMPRESSIBLE PKE FROM RaANDOM ORACLES

We then show how to construct rate-1 incompressible PKE from random oracles, plain PKE,
and rate-1 incompressible SKE. The construction is essentially a hybrid mode PKE with ran-
dom oracles plugged in. Notice that this construction can be viewed as a generalization of

Construction s in Section 7.1 of .

Construction 6.7.2. Let \, S be security parameters. Given PKE'" = (Gen', Enc’, Dec’) «
plain PKE scheme with many-time CPA security, SKE = (Gen, Enc, Dec) a rate-1 incom-
pressible SKE with (22,1, g, S)-MULT-SIM-CPA security, message space {0, 1}" and key space
{0,1}5, and H : {0,1}PYN) — {0, 1}5+ 4 hash function modelled as a random oracle, we

construct I1 = (Gen, Enc, Dec) for message space {0,1}" as follows:
 Gen(1*,1%): Run (pk,sk) «— PKE'".Gen'(1*). Output (pk, sk).

* Enc(pk, m): Samplea short random r € {0,1}PYN. Computec + PKE'.Enc’(pk, r)
and d <— SKE.Enc(H(r), m). Output ct = (c,d).

253

* Dec(sk,ct = (c,d)): Getr < PKE'.Dec'(sk, ¢), and output m < SKE.Dec(H(r), d).

It is easy to see that given the correctness of PKE’ and SKE and that / is deterministic,
this construction is correct. The ciphertexts have length |¢| + |d| = 7 + poly()), yielding an
ideal rate of (1 — o(1)). The public key and the private key both have size poly(\), which is
optimal.

We show that the construction has (2%, 2%, 4, 5)-MULT-SIM-CPA security.

Theorem 6.7.2. If PKE' has many-time CPA security, SKE has (22,1, g, 5)-MULT-SIM-
CPA security, and H is a hash function modelled as a random oracle, then construction 6.7.2 is

(2*,2%, 4, 8)-MULT-SIM-CPA secure.

Proof. We show how to construct the simulator for the ideal mode experiment by using the

simulator for the underlying incompressible SKE.

For 7 € [2%], sample (pk;, sk;) <— PKE".Gen'(1*).

Receive a list of message queries {72}, ;c»») from A,. Discard without looking at it.

Run the simulation for the incompressible SKE to obtain a list of ciphertexts {d;},

forz,j € [2%].

For each 7,7 € [2*]:

— Sample a uniformly random 7;; <— {0, 1}P°'V(>‘),
— Let¢;; < PKE .Enc'(pk;, 7;,).

— Let Ctl’,j = (Cz'zja dlz/)

254

* Send {ct;;},; to A; and receive a state st of size at most S. Forward the state st to the

simulator for the incompressible SKE.

* Run theincompressible SKE simulator to obtain the simulated symmetric keys { 4, ’j} />
and reprogram the random oracle A to output H(r;;) = k; ;. In the process, if the SKE
simulator queries for message 7, ;, also query for 2, ;. Notice that there will be at most

g such queries.

{(pk;, sk;)}; and outputs a bit 1/0.

* A, receives st, {m; ’j}[i

The security of the underlying PKE’ ensures that the reprogramming of / is undetectable to
the adversary. This is because for A, 7; ; 8 are encrypted under PKE’, and the PKE’ private
keys remain hidden to A;. Therefore, A, is not able to query H on any of the 7; ’s before the
reprogramming happens, and hence is not able to detect .

By the property of the incompressible SKE simulator, the rest is easy to see that the sim-

ulator constructed above is indistinguishable from a real mode challenger.]

Remark 6.7.1. Byusing construction 6.7.1 as the incompressible SKE schme in construction 6.7.2,
we would get a rate-1, random oracle based, incompressible PKE scheme for message space {0,1}”

that has (2, 2, 57 S)-MULT-SIM-CPA security.

255

[1]

[2]

(3]

[4]

(5]

6]
[7]

[8]

References

Aggarwal, D., Obremski, M., Ribeiro, J. L., Siniscalchi, L., & Visconti, I. (2020). How
to extract useful randomness from unreliable sources. In A. Canteaut & Y. Ishai (Eds.),
EUROCRYPT 2020, Part I, volume 12105 of LNCS (pp. 343—372).: Springer, Hei-
delberg.

Albrecht, M., Cid, C., Paterson, K. G., Tjhai, C. J., & Tomlinson, M. (2019). Nts-
kem. NIST submissions, 2, 4—13.

Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., & Wichs, D. (2010). Public-key
encryption in the bounded-retrieval model. In H. Gilbert (Ed.), EUROCRYPT zo01o0,
volume 6110 of LNCS (pp. 113-134).: Springer, Heidelberg.

Alwen,]., Dodis, Y., & Wichs, D. (2009). Leakage-resilient public-key cryptography
in the bounded-retrieval model. In S. Halevi (Ed.), CRYPTO 2009, volume 5677 of
LNCS (pp. 36—54).: Springer, Heidelberg.

Ananth, P, Jain, A., & Sahai, A. (2017). Indistinguishability obfuscation for turing
machines: Constant overhead and amortization. In J. Katz & H. Shacham (Eds.),

CRYPTO 2017, Part II, volume 10402 of LNCS (pp. 252-279).: Springer, Heidel-
berg.

Ananth, P. & Placa, R. L. L. (2020). Secure software leasing.

Aumann, Y. & Rabin, M. O.(1999). Information theoretically secure communication
in the limited storage space model. In M. J. Wiener (Ed.), CRYPTO’99, volume 1666
of LNCS (pp. 65—79).: Springer, Heidelberg.

Ball, M., Dachman-Soled, D., Kulkarni, M., & Malkin, T. (2018). Non-malleable
codes from average-case hardness: AC, decision trees, and streaming space-bounded
tampering. InJ. B. Nielsen & V. Rijmen (Eds.), EUROCRYPT 2018, Part I1I, volume
10822 of LNCS (pp. 618—650).: Springer, Heidelberg.

256

[]

[x0]

Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S. P., &
Yang, K. (2001). On the (im)possibility of obfuscating programs. In J. Kilian (Ed.),
CRYPTO zo01, volume 2139 of LNCS (pp. 1-18).: Springer, Heidelberg.

Bardet, M., Barelli, E., Blazy, O., Torres, R. C., Couvreur, A., Gaborit, P., Otmani,
A., Sendrier, N., & Tillich, J.-P. (2017). Big quake binary goppa quasi—cyclic key

encapsulation. NIST submissions.

Barnett Jr., T. (2016). The zettabyte era officially be-
gins (how much is that).

Barrington, D. A. M. (1986). Bounded-width polynomial-size branching programs
recognize exactly those languages in NC'. In 18th ACM STOC (pp. 1-5).: ACM

Press.

Bellare, M. & Fuchsbauer, G. (2014). Policy-based signatures. In H. Krawczyk (Ed.),
PKC 2014, volume 8383 of LNCS (pp. 520-537).: Springer, Heidelberg.

Bellare, M., Kane, D., & Rogaway, P. (2016). Big-key symmetric encryption: Resisting
key exfiltration. In M. Robshaw & J. Katz (Eds.), CRYPTO 2016, Part I, volume 9814
of LNCS (pp. 373—402).: Springer, Heidelberg.

Bendlin, R., Nielsen, J. B., Nordholt, P. S., & Orlandi, C. (2011). Lower and upper
bounds for deniable public-key encryption. In D. H. Lee & X. Wang (Eds.), 4SI-
ACRYPT 2011, volume 7073 of LNCS (pp. 125-142).: Springer, Heidelberg.

Bernstein, D. J., Chou, T., Lange, T., von Maurich, I., Misoczki, R., Niederhagen, R.,
Persichetti, E., Peters, C., Schwabe, P., Sendrier, N., et al. (2017). Classic mceliece:
conservative code-based cryptography. NIST submissions.

Biryukov, A. & Khovratovich, D. (2016). Egalitarian computing. In T. Holz & S.
Savage (Eds.), USENIX Security 2016 (pp. 315-326).: USENIX Association.

Bitansky, N., Canetti, R., Kalai, Y. T., & Paneth, O. (2014). On virtual grey box ob-
fuscation for general circuits. In J. A. Garay & R. Gennaro (Eds.), CRYPTO 2014,
Part II, volume 8617 of LNCS (pp. 108-125).: Springer, Heidelberg.

Boneh, D, Sahai, A., & Waters, B. (2011). Functional encryption: Definitions and
challenges. In Y. Ishai (Ed.), T7CC 2011, volume 6597 of LNCS (pp. 253-273).:
Springer, Heidelberg.

257

https://blogs.cisco.com/sp/the-zettabyte-era-officially-begins-how-much-is-that
https://blogs.cisco.com/sp/the-zettabyte-era-officially-begins-how-much-is-that

[20]

[26]

[27]

[28]

[29]

[30]

Boneh, D. & Waters, B. (2013). Constrained pseudorandom functions and their ap-
plications. In K. Sako & P. Sarkar (Eds.), ASIACRYPT 2013, Part I1, volume 8270 of
LNCS (pp. 280-300).: Springer, Heidelberg.

Boneh, D. & Zhandry, M. (2014). Multiparty key exchange, efficient traitor tracing,
and more from indistinguishability obfuscation. In J. A. Garay & R. Gennaro (Eds.),
CRYPTO zo014, Part I, volume 8616 of LNCS (pp. 480-499).: Springer, Heidelberg.

Boyle, E., Chung, K.-M., & Pass, R. (2014a). On extractability obfuscation. In Y.
Lindell (Ed.), TCC 2014, volume 8349 of LNCS (pp. s2—73).: Springer, Heidelberg.

Boyle, E., Goldwasser, S., & Ivan, I. (2014b). Functional signatures and pseudoran-
dom functions. In H. Krawczyk (Ed.), PKC 2014, volume 8383 of LNCS (pp. so1-
519).: Springer, Heidelberg.

Brakerski, Z., Déttling, N., Garg, S., & Malavolta, G. (2020). Candidate iO from
homomorphic encryption schemes. In A. Canteaut & Y. Ishai (Eds.), EURO-
CRYPT z0z0, Part I, volume 12105 of LNCS (pp. 79—-109).: Springer, Heidelberg.

Branco, P., Déttling, N., & Dujmovic, J. (2022). Rate-1 incompressible encryption
from standard assumptions. In E. Kiltz & V. Vaikuntanathan (Eds.), 7CC zo2zz,
Part II, volume 13748 of LNCS (pp. 33-69).: Springer, Heidelberg.

Cachin, C., Crépeau, C., & Marcil, J. (1998). Oblivious transfer with a memory-
bounded receiver. In 3 9th FOCS (pp. 493—502).: IEEE Computer Society Press.

Cachin, C. & Maurer, U. M. (1997). Unconditional security against memory-
bounded adversaries. In B. S. Kaliski Jr. (Ed.), CRYPTO’97, volume 1294 of LNCS
(pp- 292-306).: Springer, Heidelberg.

Canetti, R., Dwork, C., Naor, M., & Ostrovsky, R. (1997). Deniable encryption. In
B. S. Kaliski Jr. (Ed.), CRYPTO’7, volume 1294 of LNCS (pp. 90-104).: Springer,
Heidelberg.

Canetti, R., Halevi, S., & Katz, J. (2003). A forward-secure public-key encryption
scheme. In E. Biham (Ed.), EUROCRYPT 2003, volume 2656 of LNCS (pp. 255-
271).: Springer, Heidelberg.

Canetti, R., Park, S., & Poburinnaya, O. (2020). Fully deniable interactive encryption.
In D. Micciancio & T. Ristenpart (Eds.), CRYPTO zozo, Part I, volume 12170 of
LNCS (pp. 807-835).: Springer, Heidelberg.

258

[31]

[32]

[33]

[34]

Cash, D., Ding, Y. Z., Dodis, Y., Lee, W., Lipton, R. J., & Walfish, S. (2007).
Intrusion-resilient key exchange in the bounded retrieval model. In S. P. Vadhan (Ed.),
TCC 2007, volume 4392 of LNCS (pp. 479-498).: Springer, Heidelberg.

Cramer, R. & Shoup, V. (2002). Universal hash proofs and a paradigm for adap-
tive chosen ciphertext secure public-key encryption. In L. R. Knudsen (Ed.), EURO-
CRYPT 2002, volume 2332 of LNCS (pp. 45—64).: Springer, Heidelberg.

Cramer, R. & Shoup, V. (2003). Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-

puting, 33(1), 167-226.
Damgird, L, Fehr, S., Renner, R., Salvail, L., & Schaffner, C. (2007). A tight high-

order entropic quantum uncertainty relation with applications. In A. Menezes (Ed.),
CRYPTO z007, volume 4622 of LNCS (pp. 360-378).: Springer, Heidelberg.

Damgird, I. & Jurik, M. (2001). A generalisation, a simplification and some applica-
tions of Paillier’s probabilistic public-key system. In K. Kim (Ed.), PKC 2001, volume
1992 of LNCS (pp. 119-136).: Springer, Heidelberg.

Department, S. R. (2018). Data center storage capacity worldwide from
2016 to 2021, by segment.

Di Crescenzo, G., Lipton, R. J., & Walfish, S. (2006). Perfectly secure password pro-
tocols in the bounded retrieval model. In S. Halevi & T. Rabin (Eds.), 7CC 2006,
volume 3876 of LNCS (pp. 225-244).: Springer, Heidelberg.

Diffie, W., van Oorschot, P. C., & Wiener, M. J. (1992). Authentication and authen-
ticated key exchanges. Designs, Codes and Cryptography, 2(2), 107-125.

Ding, Y. Z. (2001). Oblivious transfer in the bounded storage model. In J. Kilian
(Ed.), CRYPTO 2001, volume 2139 of LNCS (pp. 155-170).: Springer, Heidelberg.

Ding, Y. Z., Harnik, D., Rosen, A., & Shaltiel, R. (2004). Constant-round oblivious
transfer in the bounded storage model. In M. Naor (Ed.), TCC 2004, volume 295 1 of
LNCS (pp. 446-472).: Springer, Heidelberg.

Dinur, L., Stemmer, U., Woodruft, D. P., & Zhou, S. (2023). On differential privacy
and adaptive data analysis with bounded space. Cryptology ePrint Archive, Report
2023/171. .

259

https://www.statista.com/statistics/638593/worldwide-data-center-storage-capacity-cloud-vs-traditional/
https://www.statista.com/statistics/638593/worldwide-data-center-storage-capacity-cloud-vs-traditional/
https://eprint.iacr.org/2023/171

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Dodis, Y., Quach, W., & Wichs, D. (2022). Authentication in the bounded storage
model. In O. Dunkelman & S. Dziembowski (Eds.), EUROCRYPT 2022, Part I11,
volume 13277 of LNCS (pp. 737-766).: Springer, Heidelberg.

Dodis, Y., Reyzin, L., & Smith, A. (2004). Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. In C. Cachin & J. Camenisch (Eds.), EU-
ROCRYPT 2004, volume 3027 of LNCS (pp. 523—540).: Springer, Heidelberg.

Dziembowski, S. (2006a). Intrusion-resilience via the bounded-storage model. In
S. Halevi & T. Rabin (Eds.), 7CC 2006, volume 3876 of LNCS (pp. 207-224).:
Springer, Heidelberg.

Dziembowski, S. (2006b). On forward-secure storage (extended abstract). In C.
Dwork (Ed.), CRYPTO 2006, volume 4117 of LNCS (pp. 251-270).: Springer, Hei-
delberg.

Dziembowski, S., Kazana, T., & Zdanowicz, M. (2018). Quasi chain rule for min-
entropy. Information Processing Letters, 134, 62—66.

Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., & Waters, B. (2013a). Can-
didate indistinguishability obfuscation and functional encryption for all circuits. In
54th FOCS (pp. 40-49).: IEEE Computer Society Press.

Garg, S., Gentry, C., Halevi, S., Sahai, A., & Waters, B. (2013b). Attribute-based
encryption for circuits from multilinear maps. In R. Canetti &]J. A. Garay (Eds.),
CRYPTO 2013, PartII, volume 8043 of LNCS (pp. 479—499).: Springer, Heidelberg.

Garg, S., Gentry, C., Halevi, S., & Wichs, D. (2014). On the implausibility of differing-
inputs obfuscation and extractable witness encryption with auxiliary input. In J. A.
Garay & R. Gennaro (Eds.), CRYPTO 2014, Part I, volume 8616 of LNCS (pp. 518-
535).: Springer, Heidelberg.

Garg, S., Gentry, C., Sahai, A., & Waters, B. (2013¢). Witness encryption and its ap-
plications. In D. Boneh, T. Roughgarden, & J. Feigenbaum (Eds.), 45th ACM STOC
(pp- 467—476).: ACM Press.

Gay, R. & Pass, R. (2021). Indistinguishability obfuscation from circular security. In
S. Khuller & V. V. Williams (Eds.), 537d ACM STOC (pp. 736-749).: ACM Press.

Gentry, C., Sahai, A., & Waters, B. (2013). Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In R.

260

[55]

[s6]

[57]

[58]

[59]

Canetti & J. A. Garay (Eds.), CRYPTO z013, Part I, volume 8042 of LNCS (pp. 75—
92).: Springer, Heidelberg.

Goldreich, O., Goldwasser, S., & Micali, S. (1984). On the cryptographic applications
of random functions. In G. R. Blakley & D. Chaum (Eds.), CRYPTO’84, volume 196
of LNCS (pp. 276—288).: Springer, Heidelberg.

Goldreich, O., Goldwasser, S., & Micali, S. (1986). How to construct random func-
tions. Journal of the ACM, 33(4), 792—807.

Goldreich, O. & Levin, L. A. (1989). A hard-core predicate for all one-way functions.
In 215t ACM STOC (pp. 25-32).: ACM Press.

Goldwasser, S. & Kalai, Y. T. (2003). On the (in)security of the Fiat-Shamir paradigm.
In 44th FOCS (pp. 102—115).: IEEE Computer Society Press.

Gorbunov, S., Vaikuntanathan, V., & Wee, H. (2012). Functional encryption with
bounded collusions via multi-party computation. In R. Safavi-Naini & R. Canetti
(Eds.), CRYPTO 2012, volume 7417 of LNCS (pp. 162—179).: Springer, Heidelberg.

Goyal, R., Koppula, V., & Waters, B. (2017). Lockable obfuscation. In C. Umans
(Ed.), s8th FOCS (pp. 612—621).: IEEE Computer Society Press.

Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. In
28th ACM STOC (pp. 212-219).: ACM Press.

Guan, J., Wichs, D., & Zhandry, M. (2022). Incompressible cryptography. In O.
Dunkelman & S. Dziembowski (Eds.), EUROCRYPT 2022, Part I, volume 13275 of
LNCS (pp. 700-730).: Springer, Heidelberg.

Guan, J., Wichs, D., & Zhandry, M. (2023). Somewhere randomness extraction and
security against bounded-storage mass surveillance. Cryptology ePrint Archive, Paper
2023/409.

Guan, J. & Zhandry, M. (2019). Simple schemes in the bounded storage model. In Y.
Ishai & V. Rijmen (Eds.), EUROCRYPT 2019, Part III, volume 11478 of LNCS (pp.
500-524).: Springer, Heidelberg.

Guan, J. & Zhandry, M. (2021). Disappearing cryptography in the bounded storage
model. In K. Nissim & B. Waters (Eds.), T7CC 2021, Part II, volume 13043 of LNCS
(pp- 365—396).: Springer, Heidelberg.

261

https://eprint.iacr.org/2023/409

[64]

[65]

[66]

[67]

Giinther, C. G. (1990). An identity-based key-exchange protocol. In J.-J. Quisquater
& J. Vandewalle (Eds.), EUROCRYPT’89, volume 434 of LNCS (pp. 29-37).:
Springer, Heidelberg.

Guruswami, V. (2004). List decoding of error-correcting codes: winning thesis of the
2002 ACM doctoral dissertation competition, volume 3282. Springer Science & Busi-
ness Media.

Haber, S. & Stornetta, W. S. (1991). How to time-stamp a digital document. In A. J.
Menezes & S. A. Vanstone (Eds.), CRYPTO’90, volume 537 of LNCS (pp. 437-455).:
Springer, Heidelberg.

Holenstein, T., Kiinzler, R., & Tessaro, S. (2011). The equivalence of the random
oracle model and the ideal cipher model, revisited. In L. Fortnow & S. P. Vadhan
(Eds.), 437d ACM STOC (pp. 89-98).: ACM Press.

Hubacek, P. & Wichs, D. (2015). On the communication complexity of secure func-
tion evaluation with long output. In T. Roughgarden (Ed.), I/7CS 2015 (pp. 163-
172).: ACM.

Impagliazzo, R., Levin, L. A., & Luby, M. (1989). Pseudo-random generation from
one-way functions (extended abstracts). In 215t ACM STOC (pp. 12—24).: ACM
Press.

Impagliazzo, R. & Rudich, S. (1990). Limits on the provable consequences of one-
way permutations. In S. Goldwasser (Ed.), CRYPTO’88, volume 403 of LNCS (pp.
8—26).: Springer, Heidelberg.

[71] Jain, A., Lin, H., & Sahai, A. (2021). Indistinguishability obfuscation from well-

[72]

[73]

[74]

founded assumptions. In S. Khuller & V. V. Williams (Eds.), 537d ACM STOC (pp.
60-73).: ACM Press.

Kalai, Y. T. (2005). Smooth projective hashing and two-message oblivious transfer. In
R. Cramer (Ed.), EUROCRYPT 2005, volume 3494 of LNCS (pp.78-95).: Springer,
Heidelberg.

Kiayias, A., Papadopoulos, S., Triandopoulos, N., & Zacharias, T. (2013). Delegatable
pseudorandom functions and applications. In A.-R. Sadeghi, V. D. Gligor, & M.
Yung (Eds.), ACM CCS 2013 (pp. 669-684).: ACM Press.

Kilian, J. (1988). Founding cryptography on oblivious transfer. In 20th ACM STOC
(pp- 20-31).: ACM Press.

262

[75] Landerreche, E., Stevens, M., & Schaffner, C. (2019). Non-interactive cryptographic
timestamping based on verifiable delay functions. Cryptology ePrint Archive, Report
2019/197.

[76] Lu, C.-J. (2002). Hyper-encryption against space-bounded adversaries from on-line
strong extractors. In M. Yung (Ed.), CRYPTO 2002, volume 2442 of LNCS (pp.
257-271).: Springer, Heidelberg.

[77] Maurer, U. M. (1992). Conditionally-perfect secrecy and a provably-secure random-
ized cipher. Journal of Cryprology, s(1), 53-66.

[78] Moran, T., Shaltiel, R., & Ta-Shma, A. (2004). Non-interactive timestamping in the
bounded storage model. In M. Franklin (Ed.), CRYPTO 2004, volume 3152 of LNCS
(pp. 460-476).: Springer, Heidelberg.

[79] Moran, T. & Wichs, D. (2020). Incompressible encodings. In D. Micciancio & T.
Ristenpart (Eds.), CRYPTO 2020, Part I, volume 12170 of LNCS (pp. 494—523).:
Springer, Heidelberg.

[8o] Nisan, N. (1990). Psuedorandom generators for space-bounded computation. In
22nd ACM STOC (pp. 204-212).: ACM Press.

[81] O’Neill, A. (2010). Definitional issues in functional encryption. Cryptology ePrint
Archive, Report 2010/556.

[82] Paillier, P. (1999). Public-key cryptosystems based on composite degree residuosity
classes. In J. Stern (Ed.), EUROCRYPT 99, volume 1592 of LNCS (pp. 223-238).:
Springer, Heidelberg.

[83] Peikert, C. & Waters, B. (2008). Lossy trapdoor functions and their applications. In
R. E. Ladner & C. Dwork (Eds.), 40th ACM STOC (pp. 187-196).: ACM Press.

[84] Randall, D. (1993). Efficient generation of random nonsingular matrices. Random
Structures € Algorithms, 4.

[85] Raz, R.(2016). Fastlearning requires good memory: A time-space lower bound for
parity learning. InI. Dinur (Ed.), 5 7¢h FOCS (pp. 266—275).: IEEE Computer Society
Press.

[86] Raz, R.(2017). A time-space lower bound for a large class of learning problems. In
C. Umans (Ed.), s8th FOCS (pp. 732—742).: IEEE Computer Society Press.

263

https://eprint.iacr.org/2019/197
https://eprint.iacr.org/2010/556

[87]

[88]

[89]

[90]

[o1]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

Regev, O. (2005). On lattices, learning with errors, random linear codes, and cryp-
tography. In H. N. Gabow & R. Fagin (Eds.), 37th ACM STOC (pp. 84-93).: ACM

Press.

Ristenpart, T., Shacham, H., & Shrimpton, T. (2011). Careful with composition:
Limitations of the indifferentiability framework. In K. G. Paterson (Ed.), EURO-
CRYPT 2011, volume 6632 of LNCS (pp. 487-506).: Springer, Heidelberg.

Rivest, R. L. (1997). All-or-nothing encryption and the package transform. In E.
Biham (Ed.), FSE’97, volume 1267 of LNCS (pp. 210-218).: Springer, Heidelberg.

Rothblum, R. (2011). Homomorphic encryption: From private-key to public-key.
In Y. Ishai (Ed.), T7CC 2011, volume 6597 of LNCS (pp. 219-234).: Springer, Hei-
delberg.

Sahai, A. & Waters, B. R. (2005). Fuzzy identity-based encryption. InR. Cramer (Ed.),
EUROCRYPT 2005, volume 3494 of LNCS (pp. 457-473).: Springer, Heidelberg.

Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and
factoring. In 35¢h FOCS (pp. 124-134).: IEEE Computer Society Press.

Vadhan, S. P. (2003). On constructing locally computable extractors and cryptosys-
tems in the bounded storage model. In D. Boneh (Ed.), CRYPTO 2003, volume 2729
of LNCS (pp. 61—77).: Springer, Heidelberg.

Vadhan, S. P. et al. (2012). Pseudorandomness. Foundations and Trends® in Theo-
retical Computer Science, 7(1-3), 1-336.

Wee, H. & Wichs, D. (2020). Candidate obfuscation via oblivious LWE sampling.
Cryptology ePrint Archive, Report 2020/1042.

Wichs, D. (2013). Barriers in cryptography with weak, correlated and leaky sources.
In R. D. Kleinberg (Ed.), /TCS zo13 (pp. 111-126).: ACM.

Wichs, D. & Zirdelis, G. (2017). Obfuscating compute-and-compare programs under
LWE. In C. Umans (Ed.), 5 8th FOCS (pp. 60o-611).: IEEE Computer Society Press.

Zaverucha, G. (2015). Stronger password-based encryption using all-or-nothing trans-
forms.

264

https://eprint.iacr.org/2020/1042
https://eprint.iacr.org/2020/1042

	Abstract
	Introduction
	Our Contributions
	Organization
	Publications contained in this thesis

	Preliminaries
	Min-Entropy Extractor
	Functional Encryption

	Simple Schemes in the Bounded Storage Model
	Introduction
	Chapter Preliminaries
	Raz's Encryption Scheme
	Encrypt Zero Protocols
	Two-Party Key-Agreement Protocol
	Bit Commitment Scheme
	Oblivious Transfer Protocol

	Disappearing Cryptography in the Bounded Storage Model
	Introduction
	Defining Obfuscation in the Bounded Storage Model
	Impossibility of VBB Online Obfuscation
	Public Key Encryption with Disappearing Ciphertext Security
	Disappearing Signature Scheme
	Functional Encryption
	Candidate Construction 1
	Candidate Construction 2

	Incompressible Cryptography
	Introduction
	Chapter Preliminaries
	Incompressible Encryption: Our Basic Construction
	Rate-1 Incompressible Encryption
	Incompressible Signatures: Our Basic Construction
	Rate-1 Incompressible Signatures
	Constructing Rate-1 Functional Encryption

	Multi-User Incompressible Encryption
	Introduction
	Chapter Preliminaries
	Multi-Instance Randomness Extraction
	Multi-User Security for Incompressible Encryption
	Symmetric Key Incompressible Encryption
	Public Key Incompressible Encryption
	Incompressible Encryption in the Random Oracle Model

	References

