
Cryptography against
Space-Bounded Adversaries

Jiaxin Guan

a dissertation
presented to the faculty
of princeton university

in candidacy for the degree
of Doctor of Philosophy

recommended for acceptance
by the Department of
Computer Science

Adviser: Mark Zhandry

September 2023

© Copyright by Jiaxin Guan, 2023. All rights reserved.

Abstract

Traditionally in cryptography, we consider adversaries that are time-bounded by mak-
ing certain computational assumptions. In this thesis, I study the scenario where the adver-
saries are space-bounded, i.e. the adversary can only use up to a certain amount of memory
bits. Under these scenarios, we can achieve either unconditional security properties or never-
before-possible results.

First, I start offwithMaurer’s Bounded StorageModel. It is a model where the adversary
abides by a certain memory bound throughout the entire attack. Under this model, I show
simple constructions of a key-agreement protocol, a commitment scheme, and an oblivious
transfer protocol, all based on Raz’s lower bound on parity learning. These constructions
have several advantages over prior work, including enhanced correctness and an improved
and optimal number of rounds.

Subsequently, I show that if we combine computational assumptions with the bounded
storage model, we can achieve results that are not possible in the standard model. I define
a new object named Online Obfuscation, which is analogous to a Virtual Grey-Box Obfus-
cation in the Bounded Storage Model, and show how to use it to construct disappearing
encryption and signature schemes where the ciphertext and the signature effectively “disap-
pear” after transmission.

Lastly, I make the observation that in the Bounded Storage Model, the memory bound
on the adversary is enforced throughout the entire game. One can imagine a variant where
the bound is only enforced for long-term storage, allowing the adversary to use an arbitrary
amount of memory during the transmission phase. I define incompressible cryptography to
capture this intuition and show constructions using randomness extractors and other cryp-
tographic tools. Furthermore, I show that under the multi-user setting, we can still achieve
desired incompressible security if we simply replace the randomness extractor with a special
“multi-instance randomness extractor”.

iii

Contents

Abstract iii

1 Introduction 1
1.1 Our Contributions . 2
1.2 Organization . 8
1.3 Publications contained in this thesis . 9

2 Preliminaries 10
2.1 Min-Entropy Extractor . 11
2.2 Functional Encryption . 12

3 Simple Schemes in the Bounded StorageModel 15
3.1 Introduction . 16
3.2 Chapter Preliminaries . 29
3.3 Raz’s Encryption Scheme . 31
3.4 Encrypt Zero Protocols . 39
3.5 Two-Party Key-Agreement Protocol . 46
3.6 Bit Commitment Scheme . 48
3.7 Oblivious Transfer Protocol . 53

4 Disappearing Cryptography in the Bounded StorageModel 58
4.1 Introduction . 59
4.2 Defining Obfuscation in the Bounded Storage Model 76
4.3 Impossibility of VBBOnline Obfuscation 79
4.4 Public Key Encryption with Disappearing Ciphertext Security 84
4.5 Disappearing Signature Scheme . 92
4.6 Functional Encryption . 97
4.7 Candidate Construction 1 . 107
4.8 Candidate Construction 2 . 119

iv

5 Incompressible Cryptography 123
5.1 Introduction . 124
5.2 Chapter Preliminaries . 141
5.3 Incompressible Encryption: Our Basic Construction 142
5.4 Rate-1 Incompressible Encryption . 151
5.5 Incompressible Signatures: Our Basic Construction 157
5.6 Rate-1 Incompressible Signatures . 161
5.7 Constructing Rate-1 Functional Encryption 165

6 Multi-User Incompressible Encryption 179
6.1 Introduction . 180
6.2 Chapter Preliminaries . 197
6.3 Multi-Instance Randomness Extraction 199
6.4 Multi-User Security for Incompressible Encryption 210
6.5 Symmetric Key Incompressible Encryption 212
6.6 Public Key Incompressible Encryption 228
6.7 Incompressible Encryption in the RandomOracle Model 250

References 264

v

Listing of figures

5.1 The program PEnc. 169
5.2 The program PDec,f. 169
5.3 The program PpuncEnc . Differences from PEnc highlighted in yellow. 171
5.4 The program PpuncDec,f. Differences from PEnc,f highlighted in yellow. 171
5.5 The program Phash. 177
5.6 The program Pbindhash. Differences from Phash are highlighted in yellow. 178

vi

Dedicated to my parents, Hong Guan andMeihong Tian.

vii

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my advisor, Mark

Zhandry. Mark has been an inspiring mentor, an insightful collaborator, and an incredible

friend throughout my PhD journey. When I embarked onmy PhD, I was merely wandering

into the realm of cryptography without any set directions. I am truly thankful that Mark

brought up the direction of space-bounded adversaries, which has now become the focus of

this thesis. Although it was not initially one of Mark’s more “established” research direc-

tions, he enthusiastically embraced this new path and explored the area together with me for

the past six years.

Oneof thehighlightmemories frommyPhD is this one snowyafternoonwhenMark and

I sat in his office, staring at the snow falling onto the gorgeous Princeton campus while con-

templating a challenging problem in the Bounded StorageModel. But there have beenmany

more afternoons like this. And it is through these countless afternoons thatMark guidedme

from a bewildered PhD student to amore independent researcher. Mark’s guidance and sup-

port have been invaluable throughout this process. And of course, on a more practical note,

viii

I am grateful for the financial support I received fromMark’s NSF grant, which enabled me

to attend various conferences and engage with fellow researchers.

I am also grateful to Princeton’s Computer Science Department, which provided me

with spacious offices and decent whiteboards. I enjoyed the theory lunches and seminars

organized by the theory group, not just for their great catering choices, but more for all the

insights they’ve brought to my own research. I want to extend my special thanks to Mark

Braverman,GillatKol, RanRaz,MattWeinberg, andMarkZhandry for taking their precious

time to be onmy committee. I also deeply appreciate the administrative support fromNicki

Mahler andMitra Kelly, whose professionalism makes a lot of the complicated tasks feel like

a breeze.

I would also like to express my appreciation to all my collaborators, both on published

works and ongoing research projects: James Bartusek, Dan Boneh, Pratish Datta, Alexis

Korb, Fermi Ma, Hart Montgomery, Amit Sahai, Daniel Wichs, and Mark Zhandry. Work-

ing with them has been a truly delightful experience, and I highly value their insights into

various cryptographic problems.

Furthermore, I extendmy thanks toXinyiXu,QipengLiu,WeiZhan, YupingLuo,Cong

Qiaoben, Bin Liu, Chang Tian, Yi Zhao, and Changshuo Liu for their companionship on

this journey. During times when I felt down, stressed, or simply worried about COVID-19,

their presence and conversations always managed to uplift and carry me through the hard-

ships.

Lastly, I am deeply grateful to my parents, Hong Guan andMeihong Tian, for their un-

conditional love and unwavering support. They have always respected my choices and pro-

videdmewith themaximum level of support possible. Without them, itwould be impossible

ix

for me to reach where I am today. Therefore, I dedicate this thesis to them, who, from my

point of view, are the best parents one can possibly ask for.

x

1
Introduction

1

Time and space are the two most basic types of computational resources.

Computation time dictates the number of steps needed to solve a problem, andmemory space

determines the amount of memory storage required in this process. In cryptography, how-

ever, when we consider adversaries against cryptographic protocols, the default is to assume

only time-bounded adversaries, usually Probabilistic Polynomial Time (PPT) adversaries to

be exact. A natural question arises here:

What happens if we consider space-bounded adversaries for cryptographic protocols?

One useful tool to study this exact question is the Bounded Storage Model proposed by

Maurer77. In this thesis, we begin by presenting some new constructions in the Bounded

Storage Model and then explore alternative models to better capture space-bounded adver-

saries and give concrete constructions for cryptographic protocols under these new models.

1.1 Our Contributions

1.1.1 Simple Schemes in the Bounded StorageModel

Maurer introduced the Bounded Storage Model77 in 1992, where instead of posing con-

straints on the adversary’s computation time, we restrict thememory space that the adversary

can utilize to carry out the attacks. Amazingly, as shown byMaurer77 and a series of follow-

ing works27,26,76,7,39,40, the Bounded StorageModel has proven to be an incredibly useful tool

to obtain unconditional security proofs.

Typically, we prove the security of cryptographic protocols conditioned on certain com-

putational problems being hard, e.g. factoring large integers or Learning with Errors (LWE).

We define security in terms of security games for PPT adversaries – if the given protocol is

2

secure, then the adversary should be able to win the security game with only negligible prob-

ability. And then through reduction proofs, we show that if there exists a PPT adversary that

canwin the security game, then it can be efficiently converted to an adversary that solves these

computational problems conjectured to be hard. Unfortunately, with the current state of

complexity theory, the hardness of these problems can at best be conjectured. It turns out that

some of these hardness assumptions, such as inverting a hash function or factoring, will be

brokenwith the presence of a quantum computer by running Grover’s algorithm59 or Shor’s

algorithm92. With unconditional security proofs, the security of cryptographic schemes can

be proven without relying on any hardness assumptions. This is possible in the Bounded

Storage Model by having the honest parties exchange a large amount of information while

the adversary has a limited amount of storage to write down only a tiny portion of such com-

municated information. Then using information-theoretic arguments, we elevate the adver-

sary’s lack of knowledge to the security of the scheme.

In the first part of this thesis, we present simple new constructions that are uncondition-

ally secure by utilizing the Bounded Storage model. Concretely, we develop new construc-

tions of two-party key agreement, bit commitment, and oblivious transfer in the Bounded

Storage Model. In addition to simplicity, our constructions have several advantages over

prior work, including an improved and optimal number of rounds and enhanced correct-

ness. Contrary to prior works in the Bounded Storage Model77,27,26,76,7,39,40, which typically

use an argument akin to the birthday paradox, our schemes are based on Raz’s lower bound

for learning parities86.

3

1.1.2 Disappearing Cryptography in the Bounded StorageModel

While the Bounded Storage Model has proven to be a useful tool to study space-bounded

adversaries, we find that it has certain limitations too. The first observation we make is that

in the Bounded Storage Model, the space constraints are enforced for the adversary instead

of time constraints, whereas in real life, both computation time and memory space pose as

restrictions to algorithms. So in the second part of this thesis, we address the following ques-

tion:

What security notions can we achieve if we consider adversaries that are both time-bounded

and space-bounded?

It turns out that by combining computational assumptions with space constraints, we

can achieve security notions that are never-before-possible. In the second part of this thesis, we

propose thenotionofdisappearing cryptography, where a component of the transmission, say

a ciphertext, a digital signature, or even aprogram, is streamedbit bybit. The stream is so large

for anyone to store in its entirety, meaning the transmission effectively “disappears” once the

stream stops, while the honest parties can run encryption/decryption/signing/verification as

online algorithms during the streaming. This allows for new security notions that are un-

achievable in the standard model. For instance, in the case of disappearing ciphertexts, we

can achieve security even if the adversary is handed the private key after the streaming of the

challenge ciphertext concludes. This is impossible within the standard model, as the adver-

sary can trivially use the acquired private key to decrypt the challenge ciphertext, and hence

distinguish between the challenge messages. However, with disappearing ciphertexts, even

though the adversary has the private key, there is nothing for the adversary to decrypt, as the

4

ciphertexts have disappeared after transmission!

In this part of the thesis, we first propose the notion of online obfuscation, capturing

the goal of disappearing programs in the bounded storage model. We give a negative result

for Virtual Black Box (VBB) security in this model, but propose candidate constructions

for a weaker security goal, namely Virtual Grey Box (VGB) security. We then demonstrate

the utility of VGB online obfuscation, showing that it can be used to generate disappearing

ciphertexts and signatures. All of our applications are not possible in the standard model

of cryptography, regardless of computational assumptions used, and hence demonstrate the

huge potential of combining time and space constraints for adversaries.

1.1.3 Incompressible Cryptography

Another observation we make is that in the Bounded Storage Model, the adversary needs to

abide by the storage bound throughout the entire security game. However, in real life, short-

term storage is muchmore achievable than long-term storage. For instance, it could bemuch

easier to designate 1 TB of storage for 20 minutes than to keep 100 GB of data for 5 years.

Although 1 TB is a larger space requirement than 100 GB, in the former case one can free

up that space for other usages once the 20 minutes have passed, while in the latter case the

storage, though somewhat smaller, has to be solely dedicated to this purpose for the entire 5

year period. So it seems natural to imagine a model where we only pose restrictions on the

storage that is maintained over an extended period of time.

In the third part of this thesis, we modify the model for disappearing cryptography by

giving the adversary an unbounded amount of storage when the transmission is happening,

and bounding only the adversary’s long-term storage. Here, we ask the following question:

5

If we give the adversary an unbounded amount of short-term storage, are there any meaning

security notions that we can achieve?

We answer the question positively by proposing Incompressible Cryptography. Incom-

pressible encryption allows us to make the ciphertext size flexibly large and ensures that an ad-

versary learns nothing about the encrypted data, even if the decryption key later leaks, unless

she stores essentially the entire ciphertext. Incompressible signatures can be made arbitrarily

large and ensure that an adversary cannot produce a signature on anymessage, even one she

has seen signed before, unless she stores one of the signatures essentially in its entirety. The

notions are quite similar to that of disappearing cryptography except that the adversary is

allowed an arbitrary amount of storage during the transmission phase and then compresses

down to a smaller state for long-term storage, which we bound.

In this thesis, we give simple constructions of both incompressible public-key encryption

and signatures under minimal assumptions. Furthermore, large incompressible ciphertexts

(resp. signatures) can be decrypted (resp. verified) in a streaming manner with low storage.

In particular, these notions further strengthen the related concepts of disappearing cryptog-

raphy, the constructions of which rely on sophisticated techniques and strong, non-standard

assumptions. We extend our constructions to achieve an optimal “rate”,meaning the large ci-

phertexts (resp. signatures) can contain almost equally large messages, at the cost of stronger

assumptions.

1.1.4 Multi-User Incompressible Encryption

The final observation we address in this thesis is the high communication complexity of the

above schemes against space-bounded adversaries. In the Bounded Storage Model, the core

6

idea is to have the honest parties exchange more information than the adversary’s storage, so

the communication complexity is, by definition, higher than the adversary’s storage bound.

In the case of incompressible cryptography, though the model deviates from the Bounded

Storage Model, it still requires the honest parties to exchange information that is incom-

pressible to the adversary’s bounded long-term storage. By a simple information-theoretic

argument, the size of the honest party communication still needs to exceed the adversary’s

memory bound. So either way, to protect against adversaries with a given memory bound,

each ciphertext/signature produced by the honest parties must be at least that size. This re-

sult seems inevitable, but could be quite undesirable when themessage size itself is small. For

instance, say we are trying to protect against adversaries with memory bounds up to 1 TB,

then to send a single “Hello” message, the ciphertext needs to be terabytes in length, which

makes the scheme immensely unusable. Therefore, the question we want to ask here is:

Can we better motivate these schemes against space-bounded adversaries, from a more

practical point of view?

We provide an answer to this question by extending incompressible encryptions to the

multi-user setting. Consider a state-level adversary who observes and stores large amounts of

encrypted data from all users on the Internet, but does not have the capacity to store it all.

Later, it may target certain “persons of interest” in order to obtain their decryption keys. We

would like to guarantee that, if the adversary’s storage capacity is only (say) 1% of the total

encrypted data size, then even if it can later obtain the decryption keys of arbitrary users, it

can only learn something about the contents of (roughly) 1% of the ciphertexts, while the

rest will maintain full security. Under this setting, individual ciphertexts no longer need to

be huge in size. They are aggregated with other ciphertexts from the same and other users,

7

and as long as the amalgamation exceeds the adversary’s storage, the above security guarantee

holds. In this thesis, We provide solutions in both the symmetric key and public key setting

with various trade-offs in terms of computational assumptions and efficiency.

As the core technical tool, we study an information-theoretic problem which we refer to

as “multi-instance randomness extraction”. Suppose X1, . . . ,Xt are correlated random vari-

ableswhose total jointmin-entropy rate isα, butwe knownothing else about their individual

entropies. We choose t random and independent seeds S1, . . . , St and attempt to individu-

ally extract some small amount of randomness Yi = Ext(Xi; Si) from each Xi. We’d like to

say that roughly an α-fraction of the extracted outputs Yi should be indistinguishable from

uniform even given all the remaining extracted outputs and all the seeds. We show that this

indeed holds for specific extractors based on Hadamard and Reed-Muller codes.

1.2 Organization

InChapter 2, we introduce cryptographic primitives and information theoretic tools that are

used in multiple chapters.

In Chapter 3, we give constructions for two-party key agreement, bit commitment, and

oblivious transfer in the Bounded Storage model.

In Chapter 4, we present the concept of disappearing cryptography. We first devise the

notion of an online obfuscator, and then show how a VGB online obfuscator can be used to

achieve disappearing ciphertexts and signatures.

In Chapter 5, we propose incompressible cryptography and develop constructions of in-

compressible public-key encryption and signatures from standard assumptions. We also ex-

tend the constructions to achieve an optimal rate, with the tradeoff of stronger assumptions.

8

InChapter 6,we elevate incompressible encryptions to themulti-user settingby replacing

the randomness extractors in the constructions with a new “Multi-Instance Randomness

Extractor”.

1.3 Publications contained in this thesis

The results in this thesis are based on the following works:

• Simple Schemes in the Bounded StorageModel62, withMark Zhandry (EUROCRYPT

2019).

• DisappearingCryptography in theBoundedStorageModel63, withMarkZhandry (TCC

2021).

• IncompressibleCryptography60, withDanielWichs andMarkZhandry (EUROCRYPT

2022).

• Multi-Instance Randomness Extraction and Security against Bounded-Storage Mass

Surveillance61, with Daniel Wichs andMark Zhandry.

9

2
Preliminaries

10

In this chapter, we give preliminaries that are required across multiple chapters. For prelimi-

naries that are only relevant for a specific chapter, those are given in each chapter’s “Chapter

Preliminaries” section.

Notation-wise, for n ∈ N, we let [n] denote the ordered set {1, 2, . . . , n}. We use capital

bold letters to denote a matrixM. Lowercase bold letters denote vectors v. LetMi,j denote

the element on the i-th row, and j-th column ofM, and vi denote the i-th element of v. For a

bit-string x ∈ {0, 1}n, we let xi denote the i-th bit of x. We use diag(M1, . . . ,Mn) to denote

a matrix with block diagonalsM1, . . . ,Mn.

2.1 Min-Entropy Extractor

Recall the definition for average min-entropy:

Definition 2.1.1 (AverageMin-Entropy). For two jointly distributed randomvariables (X,Y),

the average min-entropy of X conditioned on Y is defined as

H∞(X|Y) = − logE
y $←Y

[max
x

Pr[X = x|Y = y]].

Lemma 2.1.1 (43). For random variables X,Ywhere Y is supported over a set of size T, we have

H∞(X|Y) ≥ H∞(X,Y)− logT ≥ H∞(X)− logT.

Definition 2.1.2 (Extractor80). A functionExtract : {0, 1}n×{0, 1}d → {0, 1}m is a (k, ϵ)

strong average min-entropy extractor if, for all jointly distributed random variables (X,Y)

where X takes values in {0, 1}n and H∞(X|Y) ≥ k, we have that (Ud,Extract(X;Ud),Y)

11

is ϵ-close to (s,Um,Y), where Ud and Um are uniformly random strings of length d and m re-

spectively.

Remark 2.1.1. Any strong randomness extractor is also a strong averagemin-entropy extractor,

with a constant loss in ϵ.

2.2 Functional Encryption

The concept of Functional Encryption (FE) is first raised by Sahai and Waters91 and later

formalized by Boneh, Sahai, Waters19 and O’Neill81.

Let λ be the security parameter. Let {Cλ} be a class of circuits with input spaceXλ and

output spaceYλ. A functional encryption scheme for the circuit class {Cλ} is a tuple of PPT

algorithms FE = (Setup,KeyGen,Enc,Dec) defined as follows:

• Setup(1λ) → (mpk,msk) takes as input the security parameter λ, and outputs the

master public keympk and the master secret keymsk.

• KeyGen(msk,C) → skC takes as input the master secret key msk and a circuit C ∈

{Cλ}, and outputs a function key skC.

• Enc(mpk,m) → ct takes as input the public key mpk and a message m ∈ Xλ, and

outputs the ciphertext ct.

• Dec(skC, ct)→ y takes as input a function key skC and a ciphertext ct, and outputs a

value y ∈ Yλ.

12

Wecan analogously define the “rate” of an FE scheme to be the ratio between themessage

length to the ciphertext length. We require correctness and security of a functional encryp-

tion scheme.

Definition 2.2.1 (Correctness). Afunctional encryption schemeFE = (Setup,KeyGen,Enc,Dec)

is said to be correct if for all C ∈ {Cλ} and m ∈ Xλ:

Pr

y = C(m) :

(mpk,msk)← Setup(1λ)

skC ← KeyGen(msk,C)

ct← Enc(mpk,m)

y← Dec(skC, ct)

≥ 1− negl(λ).

Consider the following Semi-Adaptive Security Experiment,DistSemiAdpt
FE,A (λ):

• Run FE.Setup(1λ) to obtain (mpk,msk) and sample a random bit b← {0, 1}.

• On input 1λ andmpk, The adversaryA submits the challenge query consisting of two

messagesm0 andm1. It then receives ct← FE.Enc(mpk,mb).

• The adversary now submits a circuit C ∈ {Cλ} s.t. C(m0) = C(m1), and receives

skC ← FE.KeyGen(msk,C).

• The adversaryA outputs a guess b′ for b. If b′ = b, we say that the adversary succeeds

and experiment outputs 1. Otherwise, the experiment outputs 0.

Definition 2.2.2 (Single-Key Semi-Adaptive Security). For security parameter λ, a func-

tional encryption scheme FE = (Setup,KeyGen,Enc,Dec) is said to have single-key semi-

13

adaptive security if for all PPT adversariesA :

Pr
[
DistSemiAdpt

FE,A (λ) = 1
]
≤ 1

2
+ negl(λ).

We can also consider selective security, where the adversary only receivesmpk after send-

ing the challenge messages. We can also considermany-time semi-adaptive/selective security,

where the adversary is able to adaptively query for as many skC as it would like, provided they

all occur after the challenge query.

14

3
Simple Schemes in the Bounded Storage

Model

15

3.1 Introduction

For the vast majority of cryptographic applications, security relies on the assumed hardness

of certain computational problems, such as factoring large integers or inverting certain hash

functions. Unfortunately, with the current state of complexity theory the hardness of these

problems can only be conjectured. This means that the security of such schemes is always

conditional on such conjectures being true.

Maurer proposes the Bounded Storage Model77 as an alternate model for constraining

the adversary; here, instead of constraining the adversary’s time, the adversary’s memory

is bounded. Amazingly, it is actually possible to give unconditional proofs of security for

schemes in thismodel. The core idea is that the honest parties exchange somuch information

that the adversary cannot possibly store it all. Then, schemes are cleverly devised to exploit

the adversary’s lack of knowledge about the scheme.

Moreover, the space bounds are only necessary when the protocol is run, and even if the

adversary later gains more space the protocol remains secure. This means schemes only need

to be designed with current storage capacities in mind. This is fundamentally different than

the usual approach of time-bounding adversaries, where an adversary can later break the pro-

tocol if its computational abilities increase. Hence, traditional schemes must be designed

with future computational abilities in mind. This is especially important in light of recent

developments in quantum computing, as Grover’s algorithm59 and Shor’s algorithm92 can

speed up attacks on many current cryptographic protocols. Hence, much of the communi-

cation taking place today will be revealed once quantum computers become reality.

In this chapter, we devise very simple round-optimal protocols for bit-commitment and

16

oblivious transfer (namely, 1 roundand2 rounds, respectively) in theBoundedStorageModel,

improving 5 rounds needed in prior works. We additionally develop a new key agreement

protocol with several advantages over prior works. Our results rely on Raz’s recent space

lower bound for learning parities86, and in particular the simple encryption scheme based on

this lower bound. Our key observation is that Raz’s encryption scheme has several useful

properties— including additive homomorphism and leakage resilience— that can be useful

for building higher-level protocols. Our core technical contribution is a new “encrypt zero”

protocol for Raz’s encryption scheme, which may be of independent interest.

Our schemes are based on entirely different techniques than most of the prior literature

—most of which is based on the birthday paradox— andwe believe this result will therefore

be a useful starting point for future work in the bounded storage model.

3.1.1 PriorWork in the Bounded StorageModel

Prior work in the Bounded StorageModel77,27,26,76,7,39,40 typically uses something akin to the

birthday paradox to achieve security against space-bounded adversaries.

In slightly more detail, the key agreement scheme of Maurer77 works as follows. One

party sends a stream of roughly n2 random bits to the other party *. Each party records a

random secret subset of n bits of the stream. By the birthday paradox, the two parties will

have recorded one bit position in common with constant probability. They therefore share

the bit positions they recorded with each other, and set their secret key to be the bit of the

stream at the shared position.

*In most works in the Bounded Storage Model, the random bit stream is assumed to come from a trusted
third party. Here we will insist on there being no trusted third party, and instead the bit stream comes from the
parties themselves.

17

An eavesdropper first sees n2 random bits. If the eavesdropper’s storage is somewhat

lower than n2, he cannot possibly remember the entire sequence of random bits. In particu-

lar, it can be shown that the adversary has little information about the bit shared by the two

honest parties. This remains true even after the parties share their bit positions. Notice that

the honest parties require space n, and security holds even for adversaries with space Cn2 for

some constant C. Therefore, by tuning n so that n storage is feasible, but Cn2 is not, one

obtains the desired security.

Much of the literature on the Bounded Storage Model relies on this sort of birthday at-

tack property. Unfortunately, this leads to several difficulties:

• The two honest parties only achieve success with constant probability. In order to

achieve success with high probability, the protocol either needs to be repeated many

times (thus requiring more than n2 communication) or requires the honest users to

store more than n positions (thus requiring more than n space, and making the gap

between the honest users and adversaries less than quadratic).

• Remembering n random positions out of n2 requires O(n log n) space just to record

the indices. To compress the space requirements of the honest parties, the positions are

actually chosen by a pairwise independent function, complicating the scheme slightly.

• The adversaryhas a 1/n2 chanceof guessing thebit position sharedby the twousers. As

such, the adversary has a non-negligible advantage in guessing the bit. To get statistical

security, a randomness extraction step is applied, adding slightly to the complexity of

the protocol.

• More importantly, there is very little structure to exploit with the birthday approach.

18

Formore advanced applications such as oblivious transfer or bit commitment, the pro-

tocols end up being somewhat complicated and require several rounds.

3.1.2 Space Lower Bounds For Learning Parities

In this chapter, we exploit recent space lower bounds due to Raz86. Raz considers a setting

where one party holds a secret key k ∈ {0, 1}n, and streams random tuples (ri, ri · k), where

ri is random in {0, 1}n and the inner product is taken mod 2. Raz asks: given these random

tuples, and only limited storage (namely Cn2 for some constant C), how hard is it to recover

k? Clearly, ifC ≈ 1, then one can store n tuples, and then recover k using linear algebra. But

if C≪ 1, then the adversary has no hope of storing enough tuples to perform linear algebra.

Raz proves that, for some constant C (roughly 1/20), then either the adversary needs an

exponential (in n) number of samples, or the adversary’s probability of correctly guessing k

is exponentially small.

Raz observes that his lower bound easily leads to a secret key encryption scheme in the

bounded storagemodel. The key will be an n-bit string k. To encrypt amessage bit b, choose

a random r, and produce the ciphertext (r, r · k ⊕ b). Raz’s lower bound shows that after

seeing fewer than exponentially many encrypted messages, an adversary with Cn2 space has

an exponentially small probability of guessing k. This means k always has somemin-entropy

conditioned on the adversaries’ view. Then using the fact that the inner product is a good

extractor, we have that for any new ciphertext r · k is statistically close to random, and hence

masks the message b.

19

3.1.3 Our Construction

In this chapter, we use Raz’s scheme in order to develop simple new constructions in the

Bounded Storage Model that have several advantages over prior work.

Our main observation is that Raz’s encryption scheme has several attractive properties.

First, it is leakage resilient: since inner products are strong extractors, the scheme remains

secure even if the adversary has partial knowledge of the key, as long as the conditional min-

entropy of the key is large.

Next, we note that Raz’s scheme is additively homomorphic: given encryptions (r0, r0 ·

k⊕m0) and (r1, r1 ·k⊕m1) ofm0,m1, we can compute an encryption ofm0⊕m1 by simply

taking the componentwise XOR of the two ciphertexts, yielding (r0 ⊕ r1, (r0 ⊕ r1) · k ⊕

(m0⊕m1)). This additive homomorphismwill prove very useful. We can also toggle the bit

being encrypted by toggling the last bit of a ciphertext.

For example, Rothblum90 shows that any additively homomorphic secret key encryption

scheme can be converted into a public key (additively homomorphic) encryption scheme.

The rough idea is that the public key consists of many encryptions of zero. Then, to devise

an encryption of a bit m, simply add a random subset sum of the public key ciphertexts to

get a “fresh” encryption of zero, and then toggle the encrypted bit as necessary to achieve an

encryption ofm.

KeyAgreement. In the case ofRaz’s scheme, the public keywill end up containingO(n)

ciphertexts,meaning thepublic key is too large for the honest users to evenwrite down. How-

ever, we can re-interpret this protocol as a key-agreement protocol. Here, the public key is

streamed from user A to user B, who applies the additive homomorphism to construct the

20

fresh encryption on the fly. Now one party knows the secret key, and the other has a fresh

ciphertext with a known plaintext. So the second party just sends the ciphertext back to the

first party, who decrypts. The shared key is the plaintext value.

Bit Commitment. Next, we observe that the public key encryption scheme obtained

above is committing: for any public key there is a unique secret key. Therefore, we can use

the scheme to get a bit commitment scheme as follows: to commit to a bit b, the Committer

simply chooses a random secret key, streams the public key to the receiver, and then sends an

encryption of b. To open the commitment, the Committer simply sends the secret decryp-

tion key. TheVerifier, on the other hand, constructs several fresh encryptions of 0 by reading

the Committer’s stream, as user B did in our key agreement protocol. Upon receiving a sup-

posed secret key, the Verifier checks that all the encryptions do in fact decrypt to 0. If so, then

it decrypts the commitment to get the committed value.

ObliviousTransfer. Wecan also turn this commitment scheme into anoblivious trans-

fer protocol: theReceiver, on input b, commits to the bit b. Then the Sender, on input x0, x1,

using the homomorphic properties of the encryption scheme, turns the encryption of b in

the commitment into encryptions of (1 − b)x0 and bx1. To maintain privacy of x1−b, the

Sender will re-randomize the encryptions, again using the homomorphic properties. To re-

randomize, the Sender will construct some fresh encryptions of zero, again just as user B did

in our key agreement protocol. The Receiver can then decrypt these ciphertexts, which yield

0 and xb.

21

Malicious Security. The commitment scheme and the oblivious transfer protocol are

secure as long as the public key is generated correctly. This occurs, for example, if the ran-

domness for the encryptions of 0 is generated and streamed by a trusted third party. This is

the setting considered in much of the prior work in the bounded storage model.

On the other hand, if we do not wish to rely on a trusted third party to generate the en-

cryption randomness, a malicious Committer can choose a public key with bad randomness,

which will allow him to break the commitment, as explained below. This also would let the

Receiver break the security of the oblivious transfer protocol. We therefore additionally show

how tomodify the constructions above to obtain security for malicious parties without rely-

ing on a trusted third party. The result is round-optimal protocols for bit-commitment and

oblivious transfer without a trusted third party.

3.1.4 Additional Technical Details

The Encrypt Zero Protocol. Notice that all of our schemes have a common feature:

oneuser has a secret key, and theother user obtains encryptions of 0. Importantly for security,

these encryptions of 0 should be independent of the view of the first user.

In order to unify our schemes, we abstract the common features requiredwith anEncrypt

Zero protocol for Raz’s encryption scheme. The goal of the protocol is to give one party, the

Keeper, a randomkey s, and another party, theRecorder,λ random encryptions {c1, . . . , cλ}

of 0. Here, λ is a parameter that will be chosen based on application. Recorder security

dictates that theKeeper learns nothing about theλ encryptions stored by theRecorder (aside

from the fact that they encrypt 0). Keeper security requires that the min-entropy of the key s

conditioned on the Recorder’s view isΩ(n). We additionally require that the Keeper’s space

22

is O(n) (which is optimal since the Keeper must store a secret key of O(n) bits), and the

Recorder’s space isO(λn) (which is also optimal, since theRecordermust storeλ encryptions

ofO(n) bits each).

Our basic protocol for Raz’s scheme works as follows:

• The Keeper chooses a random key k ∈ {0, 1}n. Letm = O(n) be a parameter. The

Recorder chooses a secret matrixΣ ∈ {0, 1}λ×m.

• The Keeper streamsm encryptions (ri, ai = ri · k + 0) to the Recorder, for random

ri ∈ {0, 1}n and i = 1, 2, . . . ,m. From now on, we use the convention that “+” and

“·” are carried out mod 2.

• TheRecordermaintainsmatrixΨ ∈ {0, 1}λ×n and column vectorκ ∈ {0, 1}λ. Each

rowof (Ψ|κ)will be a random subset-sumof the encryptions sent by theKeeper, with

each subset-sum chosen according toΣ. Thematrices will be computed on the fly. So

when (ri, ai) comes in, the Recorder will mapΨ → Ψ + σi · ri, κ → κ + σiai.

Here,σi is the i-th column ofΣ, and ri is interpreted as a row vector.

• At the endof the protocol, theKeeper outputs its key s = k, and theRecorder outputs

(Ψ|κ), whose rows are the ciphertexts c1, . . . , cλ.

Let R be the matrix whose rows are the ri’s, and let a be the column vector of the ai’s.

Then we have that a = R · k,Ψ = Σ · R, and κ = Σ · a = Ψ · k. Hence, the rows of

(Ψ|κ) are encryptions of zero, as desired.

For Keeper security, Raz’s theorem directly shows that k has min-entropy relative to the

Recorder’s view. For Recorder security, notice that Σ is independent of the the Keeper’s

23

view. Therefore, if the Keeper follows the protocol andm is slightly larger than n so thatR

is full rank with high probability, thenΨ is a randommatrix independent of the adversary’s

view. Therefore the ciphertexts ci are actually random encryptions of 0. Thus we get security

for honest-but-curious Keepers.

KeyAgreement. This protocol gives a simple key-agreement scheme. Basically, one party

acts as the Keeper, and one as the Recorder. We set λ = 1. The result of the Encrypt Zero

protocol is that the Recorder contains a uniformly random encryption of 0. The Recorder

simply flips the bit encrypted with probability 1/2 to get a random encryption of a random

bit b, and sends the resulting ciphertext to the Keeper. The Keeper decrypts, and the shared

secret key is just the resulting plaintext b.

Security of the protocol follows from the fact that after the Encrypt Zero protocol, the

Keeper’s key has min-entropy relative to any eavesdropper (since the eavesdropper learns no

more than theRecorder). Moreover, theKeeper acts honestly, so the final ciphertext is always

a fresh encryption. Finally, the encryption scheme is leakage resilient so it hides the bit b even

though the adversary may have some knowledge of the key.

Notice that this scheme has perfect correctness, in that the two parties always arrive at a

secret key. This is in contrast to the existing schemes based on the birthday paradox, where

security is only statistical, and moreover this holds only if the adversary’s space bounds are

asymptotically smaller than n2. In contrast, we get perfect correctness and statistical security

for adversarial space bounds that areO(n2). The honest users only requireO(n) space.

Bit Commitment. We now describe a simple bit-commitment protocol using the above

EncryptZeroprotocol. Recall that in a bit-commitment scheme, there are twophases: a com-

24

mit phase where the Committer commits to a bit b, and a reveal or de-commit phase where

the Committer reveals b and proves that b was the value committed to. After the commit

phase, we want that the bit b is hidden. On the other hand, we want the commit phase to be

binding, in that the Committer cannot later change the committed bit to something else.

The Committer and the Verifier will run the Encrypt Zero protocol, with Committer

playing the role of Keeper and Verifier the role of Recorder. The protocol works as follows:

• Run the Encrypt Zero protocol, giving theCommitter a randomkey s and the Verifier

λ random encryptions ci of 0.

• The Committer then sends an encryption of b relative to the key s.

• To open the commitment, the Committer sends s. The Verifier checks that s correctly

decrypts all the ci to 0. If so, it decrypts the final ciphertext to get b.

The security of the Encrypt Zero protocol and the leakage resilience of the encryption

scheme show that this scheme is hiding. For binding, we note that an honest Committer

will have no idea what encryptions ci the Verifier has. As such, if the Committer later tries

to change its committed bit by sending a malicious key s′, s′ will cause each ciphertext ci to

decrypt to 1with probability 1/2. Therefore, theCommitterwill get caughtwith probability

1− 2−λ.

Already, this gives a very simple protocol for bit commitment that is non-interactive; in

contrast, the prior work of Ding et al.40 required five rounds. One limitation is that we re-

quire the Committer to behave honestly during the commit phase. For example, if the Com-

mitter chooses R to be low rank, then the encryptions obtained by the Verifier will not be

25

independent of the Committer’s view, and hence the Committer may be able to cheat dur-

ing the de-commit phase.

To get around this, we tweak the Encrypt Zero protocol slightly to get security even

against malicious Keepers. Our Enhanced Encrypt Zero protocol is as follows:

• The Keeper chooses a random key k ∈ {0, 1}n and an independent random secret s ∈

{0, 1}m. We will letm = 2n. The Recorder chooses a secret matrixΣ ∈ {0, 1}λ×m.

• The Keeper streams random encryptions of the bits of si. We will write this in matrix

form as (R, a = R · k+ s).

• The Recorder computesΨ = Σ ·R andκ = Σ · a.

• The Keeper then sends its key k in the clear.

• The Keeper outputs its secret s as the key, and the Recorder outputs (Σ,κ−Ψ · k).

Notice thatκ−Ψ · k = Σ · s, a list of λ encryptions of 0 relative to the key s, as desired.

Moreover, these encryptions are random encryptions, even ifR is chosen adversarially by the

Keeper, since the Keeper has no knowledge or control overΣ.

To prove the min-entropy of s relative to a malicious Recorder, we note that the real-

or-random CPA security of the encryption scheme shows that just prior to receiving k, the

Recorder has essentially no information about s. Then, since k is n bits, revealing it can only

reveal n bits of s. But s is a uniformly randomm = 2n bit string, meaning it has roughly n

bits of min-entropy remaining, as desired. Thus we get both our security properties, even for

malicious parties.

26

Our Enhanced Encrypt Zero protocol roughly doubles the communication, but other-

wise maintains all the attractive properties of the original scheme: it is non-interactive and

has perfect correctness.

Putting it all together, our bit commitment protocol is the following:

• To commit to a bit b, the Committer streamsR, a = R · k + s followed by k,γ, c =

γ · s+ b for randomR, k, s,γ.

• The Verifier recordsΣ,Ψ = Σ · R,κ = Σ · a for a random choice ofΣ, and then

once k comes in it computesϕ = κ−Ψ · k = Σ · s.

• To reveal the bit b, the Committer just sends x = s.

• The Verifier checks thatϕ = Σ · x. If so, it computes b′ = c− γ · x.

Oblivious Transfer. We now turn to constructing an oblivious transfer (OT) proto-

col. In an OT protocol, one party, the Sender, has two input bits x0, x1. Another party, the

Receiver, has a bit b. The Receiver would like to learn xb without revealing b, and the Sender

would like to ensure that the Receiver learns nothing about x1−b.

In ourprotocol, theReceiverwill play the role ofCommitter in our commitment scheme,

committing to its input b. The Sender will play the role of Recorder in the Encrypt Zero

protocol, setting λ = 2. The hiding property of the commitment scheme ensures that the

space-bounded Sender learns nothing about the Receiver’s bit b.

At the end of the Receiver’s message, the Sender has an encryption (γ, c∗ = γ · s+ b) of

b with secret key s. Additionally, it also has two encryptions of 0, namely (σ0, c0 = σ0 · s)

27

and (σ1, c1 = σ1 · s) for random vectorsσ0,σ1. Importantly,σ0,σ1 are independent of the

Receiver’s view, as they were chosen by the Sender.

The Senderwill now exploit the additive homomorphism of the encryption scheme once

more. In particular, it will compute encryptions of (1− b)x0 and bx1, which it will then send

back to the Receiver. To compute an encryption of bx1, it simply multiplies the ciphertext

(γ, c∗) by x1. Similarly, to compute an encryption of (1−b)x0, it toggles c∗ (to get an encryp-

tion of 1− b) and then multiplies the entire ciphertext by x0.

Now clearly these two ciphertexts reveal both x0 and x1, so the Sender cannot send them

directly to the Receiver. Instead, it will re-randomize them by adding the two encryptions of

0. Now it obtains fresh encryptions of (1− b)x0 and bx1:

σ0 + x0γ, c0 + x0(1− c∗) = (σ0 + x0γ) · s+
(
(1− b)x0

)
σ1 + x1γ, c1 + x1c∗ = (σ1 + x1γ) · s+

(
bx1

)
It sends these ciphertexts to theReceiver, who then decrypts. All theReceiver learns then

is (1−b)x0 and bx1. One of these plaintextswill be xb as desired, and the otherwill be 0. Thus,

the Receiver learns nothing about x1−b.

Our protocol is round-optimal, since it involves only a single message in each direction.

This improves on the best prior work of Ding et al.40 requiring 5 rounds. Additionally, our

protocol is much simpler than the prior work.

28

3.1.5 Other RelatedWork

A separate work by Ball et al.8 shows another application of Raz’s encryption scheme, where

they use it to construct unconditional non-malleable codes against streaming, space-bounded

tempering.

3.2 Chapter Preliminaries

Here, we recall some basic cryptographic notions, translated into the setting of the bounded

storage model. In the following definitions, nwill be a security parameter.

A symmetric encryption scheme is a pair of algorithmsΠ = (Enc,Dec) with an associ-

ated key spaceKn, message spaceM, and ciphertext space Cn. Notice that the key space and

ciphertext space depend on n; the message space will not depend on n. We require that:

• Enc : Kn ×M→ Cn is a probabilistic polynomial time (PPT) algorithm

• Dec : Kn × Cn →M is a deterministic polynomial time algorithm.

• Correctness: for any k ∈ Kn and any messagem ∈M,

Pr[Dec(k,Enc(k,m)) = m] = 1.

Additionally, we will require a security notion. In this chapter, we will focus on the fol-

lowing notion.

Definition 3.2.1 (Real-or-Random-Ciphertext (RoRC) Security). Let A be an adversary.

A plays the following game RoRCA,Π,b(n, q):

29

• The challenger’s input is a bit b ∈ {0, 1}.

• The challenger chooses a random key k ∈ Kn�

• Amakes q adaptive queries on messages m1, . . . ,mq ∈M.

• In response to each query, the challenger does the following:

– If b = 0, the challenger responds with ci ← Enc(k,mi).

– If b = 1, the challenger responds with a random ciphertext ci ∈ Cn.

• Finally,A outputs a guess b′ for b.

We say thatΠ is (S(n),Q(n), ϵ)-secure if for all adversaries that use at most S(n)memory

bits and Q(n) queries (i.e. q ≤ Q(n)),

| Pr[RoRCA,Π,0(n, q) = 1]− Pr[RoRCA,Π,1(n, q) = 1]| ≤ ϵ.

In this chapter, a lot of the proofs are based on theLeftoverHashLemma forConditional

Min-Entropy due to Impagliazzo, Levin, and Luby69.

For random distributions X and Y, let H∞(X|Y) denote the min-entropy of X condi-

tioned on Y. Let X ≈ϵ Y denote that the two distributions are ϵ-close, i.e. the statistical

distance between these two distributions∆(X,Y) ≤ ϵ. Furthermore, let Um denote a uni-

formly distributed random variable ofm bits for some positive integerm.

Lemma 3.2.1 (Leftover Hash Lemma for Conditional Min-Entropy69). Let X, E be a joint

distribution. If H∞(X|E) ≥ k, and m = k− 2 log(1/ϵ), then

(H(X),H,E) ≈ϵ/2 (Um,Ud,E),

30

wherem is the output length of a universal hash functionH, andd is the length of the description

of H.

3.3 Raz’s Encryption Scheme

Our constructions of the commitment scheme and the oblivious transfer scheme are largely

based on the bit encryption scheme from parity learning proposed by Raz86. Raz sketches

how his lower bound for learning implies the security of his encryption scheme. Below we

reproduce the construction of the encryption scheme, and formalize the security proof.

Construction 3.3.1 (Bit Encryption Scheme from Parity Learning). For a given security pa-

rameter n, the encryption scheme consists of a message spaceM = {0, 1}, a ciphertext space

Cn = {0, 1}n × {0, 1}, a key spaceKn = {0, 1}n, and a pair of algorithmsΠ = (Enc,Dec)

as specified below:

• Enc(k,m ∈M): Samples a random row vector r← {0, 1}n, computes a = r · k+m,

and outputs the ciphertext c = (r, a) as a pair.

• Dec(k, c = (r, a) ∈ Cn): Computes and outputs m′ = r · k+ a.

To prove Real-or-Random-Ciphertext security of the above scheme, we rely on a result

from Raz86, reproduced below.

Lemma 3.3.1 (86). For any C < 1
20 , there exists α > 0, such that: for uniform k ∈ {0, 1}n,

m ≤ 2αn, and algorithmA that takes a stream of (x1, y1), (x2, y2), . . . , (xm, ym), where xi is

a uniform distribution over {0, 1}n and yi = xi · k for every i, under the condition thatA uses

at most Cn2 memory bits and outputs k̃ ∈ {0, 1}n, then Pr[k̃ = k] ≤ O(2−αn).

31

We also rely on the Goldreich-Levin Algorithm, reproduced below.

Lemma3.3.2 (Goldreich-LevinAlgorithm55). Assume that there exists a function f : {0, 1}n →

{0, 1} s.t. for some unknown x ∈ {0, 1}n, we have

Pr
r∈{0,1}n

[f(r) = ⟨x, r⟩] ≥ 1
2
+ ϵ

for ϵ > 0.

Then there exists an algorithmGL that runs in timeO(n2ϵ−4 log n), makes O(nϵ−4 log n)

orcale queries into f, and outputs x with probabilityΩ(ϵ2).

Instead of directly proving RoRC security of the encryption scheme, we prove Modi-

fied Real-or-Random-Ciphertext (RoRC’) security, which differs from RoRC security in

that for all but the last query, the challenger always responds with the valid encryption of

the messsage; for the last query, the challenger responds either with a valid encryption or a

random ciphertext, each with probability 1/2. A detailed definition is given below.

Definition 3.3.1 (Modified Real-or-Random-Ciphertext (RoRC’) Security). Let A be an

adversary. A plays the following game RoRC′A,Π,b(n, q):

• The challenger’s input is a bit b ∈ {0, 1}.

• The challenger chooses a random key k ∈ Kn.

• Amakes q adaptive queries on messages m1, . . . ,mq ∈M.

• In response to query mi with 1 ≤ i ≤ q − 1, the challenger responds with ci ←

Enc(k,mi).

32

• In response to query mq, the challenger does the following:

– If b = 0, the challenger responds with cq ← Enc(k,mq).

– If b = 1, the challenger responds with a random ciphertext cq ∈ Cn.

• Finally,A outputs a guess b′ for b.

We say thatΠ is (S(n),Q(n), ϵ)-secure if for all adversaries that use at most S(n)memory

bits and Q(n) queries (i.e. q ≤ Q(n)),

| Pr[RoRC′A,Π,0(n, q) = 1]− Pr[RoRC′A,Π,1(n, q) = 1]| ≤ ϵ.

We now show that RoRC’ security implies RoRC security.

Lemma 3.3.3. An encryption scheme that is (S(n),Q(n), ϵ)-secure under the

RoRC’ setting is (S(n),Q(n),Q(n)ϵ)-secure under the RoRC setting.

Proof. We prove this using a hybrid argument. For any q ≤ Q(n), consider the hybrid secu-

rity gamesH0,H1, . . . ,Hq, whereHj describes the following hybrid game:

• The challenger chooses a random key k ∈ Kn.

• Amakes q adaptive queries on messagesm1, . . . ,mq ∈M.

• In response toquerymiwith 1 ≤ i ≤ j, the challenger respondswith ci ← Enc(k,mi).

• In response to querymi with j + 1 ≤ i ≤ q, the challenger responds with a random

ciphertext ci ∈ Cn.

33

Particularly, notice thatH0 corresponds to a game where the challenger always responds

with random ciphertexts, and that Hq corresponds to a game where the challenger always

responds with valid encryptions of the messages. In that way, the RoRCA,Π,b(n, q) game is

equivalent to distinguishingHq fromH0.

To put this formally, letD be an arbitrary distinguisher, and h← Hj denote a randomly

sampled instance of the gameHj, we have

|Pr[RoRCA,Π,0(n, q) = 1]− Pr[RoRCA,Π,1(n, q) = 1]|

=

∣∣∣∣ Pr
h←Hq

[D(h) = 1]− Pr
h←H0

[D(h) = 1]
∣∣∣∣ .

By the hybrid argument, there exists j, s.t. 0 ≤ j < q and

∣∣∣∣ Pr
h←Hq

[D(h) = 1]− Pr
h←H0

[D(h) = 1]
∣∣∣∣ ≤ q

∣∣∣∣ Pr
h←Hj+1

[D(h) = 1]− Pr
h←Hj

[D(h) = 1]
∣∣∣∣ .

TodistinguishbetweenHj+1 andHj, consider the following security gameDistA,Π,b(n, q, j):

• The challenger’s input is a bit b ∈ {0, 1}.

• The challenger chooses a random key k ∈ Kn.

• Amakes q adaptive queries on messagesm1, . . . ,mq ∈M.

• In response toquerymiwith 1 ≤ i ≤ j, the challenger respondswith ci ← Enc(k,mi).

• In response to querymj+1, the challenger does the following:

– If b = 0, the challenger responds with cj+1 ← Enc(k,mj+1).

34

– If b = 1, the challenger responds with a random ciphertext cj+1 ∈ Cn.

• In response to querymi with j + 1 < i ≤ q, the challenger responds with a random

ciphertext ci ∈ Cn.

• Finally,A outputs a guess b′ for b.

This directly gives us

∣∣∣∣ Pr
h←Hj+1

[D(h) = 1]− Pr
h←Hj

[D(h) = 1]
∣∣∣∣

= |Pr[DistA,Π,0(n, q, j) = 1]− Pr[DistA,Π,1(n, q, j) = 1]| .

Next, we show thatwe can use an adversaryA for theDistA,Π,b(n, q, j) game to construct

an adversaryA′ for the RoRC′A′,Π,b(n, j+ 1) game. Notice that the only difference between

RoRC′A′,Π,b(n, j+1) andDistA,Π,b(n, q, j) is thatDistA,Π,b(n, q, j)has (q−j−1) extra queries

at the end. An adversaryA′ forRoRC′A′,Π,b(n, j+1) can simulateDistA,Π,b(n, q, j) for adver-

saryA by forwarding each ofA’s first (j+ 1) queries to the challenger inRoRC′A′,Π,b(n, j+

1), and similarly forward the responses from the challenger back to A. For the additional

(q − j − 1) queries in the end,A′ can simply respond by drawing random ciphertexts from

Cn. A′ will output whatever is output byA.

Notice that adversaryA′ does not require any additional memory space besides the space

used by adversaryA. All thatA′ needs to do is to forwardA’s queries and the challenger’s

responses, and to sample random ciphertexts from Cn. These operations do not requireA′

to store any persistent states.

35

Therefore, we have

|Pr[DistA,Π,0(n, q, j) = 1]− Pr[DistA,Π,1(n, q, j) = 1]|

≤ |Pr[RoRC′A,Π,0(n, j+ 1) = 1]− Pr[RoRC′A,Π,1(n, j+ 1) = 1]| .

Bringing all theseparts together, assuming that the encryption schemeΠ is (S(n),Q(n), ϵ)-

secure yields

|Pr[RoRCA,Π,0(n, q) = 1]− Pr[RoRCA,Π,1(n, q) = 1]|

=

∣∣∣∣ Pr
h←Hq

[D(h) = 1]− Pr
h←H0

[D(h) = 1]
∣∣∣∣

≤q
∣∣∣∣ Pr
h←Hj+1

[D(h) = 1]− Pr
h←Hj

[D(h) = 1]
∣∣∣∣

=q |Pr[DistA,Π,0(n, q, j) = 1]− Pr[DistA,Π,1(n, q, j) = 1]|

≤q |Pr[RoRC′A,Π,0(n, j+ 1) = 1]− Pr[RoRC′A,Π,1(n, j+ 1) = 1]|

≤qϵ ≤ Q(n)ϵ.

Therefore,Π is (S(n)),Q(n),Q(n)ϵ)-secure under the RoRC setting.

Theorem 3.3.1. For any C < 1
20 , there existsα > 0, s.t. the bit encryption scheme from parity

learning is (Cn2, 2αn,O(2−αn/2))-secure under the RoRC’ setting.

Proof. We prove this result by reducing a parity learning game to an RoRC’ game.

To start off, we consider a weaker variant of the parity learning game described in Lemma

36

3.3.1, denoted as PLA,b(n, q):

• The challenger’s input is a bit b ∈ {0, 1}.

• The challenger chooses a random k ∈ {0, 1}n.

• The challenger streams (x1, y1), (x2, y2), . . . , (xq−1, yq−1), where xi is uniformly dis-

tributed over {0, 1}n and yi = xi · k for all i.

• The challenger sends (xq, yq), where xq is uniformly distributed over {0, 1}n and:

– If b = 0, yq = xq · k.

– If b = 1, yq is a random bit.

• Finally,A outputs a guess b′ for b.

We now show howwe can use an adversaryA forRoRC′A,Π,b(n, q) to build an adversary

A′ for PLA′,b(n, q). The adversaryA′ works as follows:

• Simulate forA an RoRC′A,Π,b(n, q) game.

• For every querymi submitted byA, respond with (xi, yi +mi) where xi and yi come

from the i-th pair of the PLA′,b(n, q) game.

• If the adversaryA outputs 0, output 0. Otherwise, output 1.

This shouldbe easily verifiable. First, notice thatA′ faithfully simulatesRoRC′A,Π,b(n, q).

For 1 ≤ i ≤ q − 1,A receives (xi, yi +mi) = (xi, xi · k +mi), which is a valid encryption

ofmi. Also, for the last querymq,A receives either (xq, yq + mq) = (xq, xq · k + mq), i.e.

a valid encryption, or (xq, yq + mq) for a random bit yq, i.e. a random ciphertext. Secondly,

37

if A outputs 0, that implies (xq, yq + mq) = Enc(k,mq) = (xq, xq · k + mq), and hence

yq = xq · k andA′ should output 0. Lastly, ifA outputs 1, we have yq +mq being a random

bit. Sincemq is fixed, we have yq a random bit and henceA′ should output 1.

This yields

|Pr[RoRC′A,Π,0(n, q) = 1]− Pr[RoRC′A,Π,1(n, q) = 1]|

≤ |Pr[PLA,0(n, q) = 1]− Pr[PLA,1(n, q) = 1]| .

Let β = |Pr[PLA,0(n, q) = 1]− Pr[PLA,1(n, q) = 1]|. Then we have an algorithm that

distinguishes between (xq, yq = xq · k) and (xq, yq ← {0, 1}) with probability (1 + β)/2,

i.e. it outputs 0 if yq is a valid inner product and 1 if it is random. This can be easily converted

into an algorithm that given xq, outputs xq · kwith probability (1+ β)/2 (simply XOR the

output of the previous algorithmwith yq). Let f be the function computed by this algorithm.

Then for given xq ∈ {0, 1}n and unknown k ∈ {0, 1}n, f(xq) =
〈
k, xq

〉
with probability

(1+β)/2. By applying Lemma 3.3.2, there is an algorithm that runs in timeO(n2β−4 log n)

and outputs kwith probability at leastΩ(β2).

Recall from Lemma 3.3.1 that for any C < 1/20, there is a positive α such that any

potentially computationally unbounded algorithm that uses up to Cn2 memory bits and has

access to atmost 2αn (xi, yi) pairs can output kwith probability atmostO(2−αn). Therefore,

for adversaries that are space-bounded byCn2 bits and submit at most 2αn queries,Ω(β2) ≤

O(2−αn). And hence β = O(2−αn/2)

Therefore, for any C < 1/20, there is a positive α such that for all adversaries that use at

38

most Cn2 memory bits and at most 2αn queries (q ≤ 2αn), we have

|Pr[RoRC′A,Π,0(n, q) = 1]− Pr[RoRC′A,Π,1(n, q) = 1]| ≤ β = O(2−αn/2),

i.e. the scheme is (Cn2, 2αn,O(2−αn/2))-secure under the RoRC’ setting as desired.

Corollary 3.3.1 (RoRC Security of the Bit Encryption Scheme from Parity Learning). For

anyC < 1
20 , there existsα > 0, s.t. the bit encryption scheme fromparity learning is (Cn2, 2αn/4,

O(2−αn/2))-secure under the RoRC’ setting (here we further bound the number of queries to

αn/4 instead of αn). By Lemma 3.3.3, this scheme is also (Cn2, 2αn/4, 2αn/4 · O(2−αn/2) =

O(2−αn/4))-secure under the RoRC setting. Put another way, for any C < 1
20 , there exists

α′(= α/4) > 0, s.t. the bit encryption scheme from parity learning is (Cn2, 2α′n,O(2−α′n))-

secure under the RoRC setting.

3.4 Encrypt Zero Protocols

In this section, we introduce two constructions of the Encrypt Zero Protocol. They both

have the same goal: to give one party, theKeeper, a random key s, and the other party, known

as the Recorder, several encryptions of 0 under the key s. They differ in that the simple con-

struction is only secure against honest-but-curiousKeepers, while the enhanced construction

is secure even against malicious Keepers.

Before we jump into the constructions, we first define an Encrypt Zero Protocol and its

security properties.

An Encrypt Zero Protocol Π involves two parties, a Keeper K and a RecorderR. The

39

protocol takes threeparametersn,m = O(n) andλ, andproduces (s, {c1, c2, . . . , cλ}, trans),

where s is a random key output byK, {c1, c2, . . . , cλ} is a set of ciphertexts output byR, and

trans is the transcript of their communication.

The correctness of an Encrypt Zero Protocol requires that the set of ciphertexts output

by R are encryptions of zero under the key s output by K. Put formally, we require that

Dec(s, ci) = 0 for all i.

Now, we define two desired security properties for the Encrypt Zero Protocol, namely

Keeper security and Recorder security.

The security of the Keeper ensures that the Keeper’s key s has enough min-entropy con-

ditioned on the Recorder’s view viewR.

Definition 3.4.1 (Keeper Security). Let the view of the Recorder be viewR, we say that a pro-

tocolΠ is (S(n), h)-secure for the Keeper if for all RecordersR that use up to S(n)memory bits,

H∞(s|viewR) ≥ h.

The security of the Recorder ensures that the Keeper learns nothing about c1, c2, . . . , cλ

(except that they are encryptions of zero).

For an honest-but-curious KeeperK, this means that given all the Keeper’s randomness

and the transcript produced by the protocol, it is hard to distinguish the output ciphertexts

(c1, c2, . . . , cλ) from some random ciphertexts that encrypt zero.

Definition 3.4.2 (Recorder SecuritywithHonest-but-CuriousKeeper). LetC = {c1, c2, . . . , cλ}

be the ciphertexts output by R at the end of the protocol, and C′ = {c′1, c′2, . . . , c′λ} where

c′i ← Enc(s, 0) be fresh encryptions of zero under the key s. Let stateK consist of all the random

40

coins used byK together with trans. Given the Keeper’s state stateK, the key s, the protocolΠ is

ϵ-secure for the Recorder if for any distinguisher D,

∣∣∣ Pr
c←C

[DstateK,s(c) = 1]− Pr
c←C′

[DstateK,s(c) = 1]
∣∣∣ ≤ ϵ.

In the case of a malicious KeeperK∗ who can have arbitrary behavior, we let stateK∗ be

the state of K∗ at the end of the protocol. Notice that regardless of the possible behaviors

thatK∗ could have, it is constrained to the state that it has stored at the end of the protocol.

It has no additional information besides what it has stored in stateK∗ .

Definition 3.4.3 (Recorder Security with Malicious Keeper). Let C = {c1, c2, . . . , cλ} be

the ciphertexts output by R at the end of the protocol, and C′ = {c′1, c′2, . . . , c′λ} where c′i ←

Enc(s, 0) be fresh encryptions of zero under the key s. Given themaliciousKeeper’s state stateK∗ ,

the key s, the protocolΠ is ϵ-secure for the Recorder if for any distinguisher D,

∣∣∣ Pr
c←C

[DstateK∗ ,s(c) = 1]− Pr
c←C′

[DstateK∗ ,s(c) = 1]
∣∣∣ ≤ ϵ.

3.4.1 Simple Encrypt Zero Protocol

Here we present the Simple Encrypt Zero Protocol, which achieves Keeper Security and

Recorder security against honest-but-curious Keeper. The main idea here is simple: the

Keeperwill stream a sequence of ciphertextswhich are encryptions of zero, and andRecorder

will obtain fresh encryptions of zero by taking random subset-sums of the ciphertexts re-

ceived.

Construction 3.4.1 (Simple Encrypt Zero Protocol). A Simple Encrypt Zero Protocol in-

41

stance EZ(n,m, λ) for the KeeperK and the RecorderR proceeds as follows:

• K chooses a random key k ∈ {0, 1}n, and R chooses a random secret matrix Σ ∈

{0, 1}λ×m.

• K streams encryptions (ri, ai = ri · k + 0) to R, for i = 1, 2, . . . ,m and random

ri ∈ {0, 1}n.

• R maintains matrix Ψ ∈ {0, 1}λ×n and column vector κ ∈ {0, 1}λ. Each row of

(Ψ|κ) will be a random subset-sum of the encryptions sent by K, with each subset-sum

chosenaccording toΣ.Ψandκwill be computed on thefly. Specifically, when encryption

(ri, ai) comes in,R will updateΨ to beΨ + σi · ri and κ to be κ + σiai. Here, σi is

the i-th column ofΣ, and ri is interpreted as a row vector.

• At the end of the protocol,K outputs its key s = k, andR outputs (Ψ|κ), whose rows are

the ciphertexts c1, c2, . . . , cλ.

Remark 3.4.1. For the ease of analysis, we combine all the encryptions sent together, and denote

R =

r1

r2

· · ·

rm

∈ {0, 1}m×n, and a =

a1

a2

· · ·

am

∈ {0, 1}m. This gives us

a = R · k.

Correspondingly, notice thatR is essentially recordingΣ,Ψ = Σ · R and κ = Σ · a =

Σ ·R · k = Ψ · k.

42

It is easy to verify that the rows of (Ψ|κ) are encryptions of 0 under the key s = k,

as they are simply sums of encryptions of 0 under s and by the additive homomorphism of

Raz’s encryption scheme they also must encrypt 0. Therefore, this construction meets the

correctness requirement for an Encrypt Zero Protocol.

Next, we show that this construction achieves Keeper security and Recorder security

against honest-but-curious Keepers.

Theorem 3.4.1 (Keeper Security of EZ). The Simple Encrypt Zero Protocol is (Cn2,Ω(αn))-

secure for the Keeper, for some C < 1
20 and α dependent on C.

Proof. This follows directly from Lemma 3.3.1. Here viewR essentially containsm pairs of

(ri, ai), where ai = ri · s for i = 1, 2, . . . ,m and random ri ← {0, 1}n. For adversaries

space-bounded to Cn2 memory bits for some C < 1
20 and α dependent on C, by apply-

ing Lemma 3.3.1, we get that the probability of an adversary outputting s is no more than

O(2−αn). Hence, the average min-entropy of s conditioned on viewR isΩ(αn).

Theorem 3.4.2 (Recorder Security of EZ). The Simple Encrypt Zero Protocol with parameter

m = 2n and an honest-but-curious Keeper is O(2−n)-secure for the Recorder.

Proof. Since the Keeper is honest and follows the protocol, R is a random m × n matrix.

Form = 2n, we haveR being a random 2n × nmatrix, which is full rank with probability

1 − O(2−n). Notice that if R is full rank, given thatΣ is a random matrix conditioned on

the Keeper’s state stateK and s,Ψ = Σ · R is also a random matrix conditioned on stateK

and s.

In this way, conditioned on stateK and s, (Ψ|κ) contains random encryptions of 0.

Therefore, bydefinition, these encryptions{c1, . . . , cλ} cannotbedistinguished from{c′1, . . . , c′λ}

43

where c′i is a random encryption of 0. Hence, the probability of distinguishing C from C′ is

bounded by the probability thatR is not full rank, which isO(2−n). Thus we have

∣∣∣ Pr
c←C

[Dtrans,s(c) = 1]− Pr
c←C′

[Dtrans,s(c) = 1]
∣∣∣ ≤ 2O(2−n) = O(2−n)

as desired.

Kindly notice that this simple construction of an Encrypt Zero protocol is only secure

for the Recorder if the Keeper is honest. For malicious Keepers, they could, for example,

generate the matrixRwith bad randomness so that it is very likely to be low rank.

Oneway to tackle this is to have the randommatrixR generated and streamedby a trusted

third party, which is a common practice in much of the prior work in the bounded storage

model. However, if we do not wish to rely on a trusted third party (notice that the model

without a trusted third party is stronger than one with a trusted third party), we show in the

following subsection how we can tweak our simple construction to have Recorder security

even against malicious Keepers.

3.4.2 Enhanced Encrypt Zero Protocol

In the Enhanced Encrypt Zero Protocol construction, we tweak the simple construction

slightly to account for malicious Keepers.

Construction 3.4.2 (EnhancedEncryptZeroProtocol). AnEnhancedEncrypt Zero Protocol

instance EZ+(n,m, λ) with the KeeperK and the RecorderR proceeds as follows:

44

• K chooses a random key k ∈ {0, 1}n and an independent random secret s ∈ {0, 1}m.

R chooses a random secret matrixΣ ∈ {0, 1}λ×m.

• K streams random encryptions of the bits in s. Namely, inmatrix form,K sends (R, a =

R · k+ s) for randomR ∈ {0, 1}m×n.

• Rmaintains matrixΨ = Σ ·R and column vectorκ = Σ · a.

• K sends its key k in the clear, andR uses that to computeϕ = κ−Ψ · k.

• K outputs s as its key, andR outputs (Σ|ϕ), whose rows are the ciphertexts c1, c2, . . . , cλ.

Notice thatϕ = κ−Ψ ·k = Σ · s, and hence the rows of (Σ|ϕ) are indeed encryptions

of 0 using key s, as desired in the correctness property.

Theorem 3.4.3 (Keeper Security of EZ+). The Simple Encrypt Zero Protocol is (Cn2,Ω(n))-

secure for the Keeper, for some C < 1
20 and α dependent on C.

Proof. First, notice that before theKeeper sends over k, the two distributions (s,R,R ·k+s)

and (s,R,R · k + s′) for random s′ ∈ {0, 1}m are statistically indistinguishable, due to the

RoRC security of Raz’s encryption scheme.

Now, notice that in the second distribution, the probability the Recorder can guess s is

2−m. In this case, if it later receives k, the probability it guesses s is still at most 2n−m, which

is 2−n.

Now, we use the following simple fact: suppose two distributions X,Y are ϵ-close. Then

there is a procedure P which first samples x ← X, and then based which x it samples, it may

replace xwith a different sample x′. P satisfies the property that (1) its output distribution is

identical to Y, and (2) the probability it re-samples is ϵ.

45

We use this simple fact by assigning X to (s,R,R · k + s′) for random s′ ∈ {0, 1}m and

Y to (s,R,R · k+ s).

Now consider the probability of guessing s. In the case X, we know it is 2−n. So if we

consider Y sampled from P, we know that the probability of guessing s in the non-replacing

case is 2−n. But the replacing case only happens with probability ϵ, meaning overall the prob-

ability of outputting s is at most ϵ+ 2−n.

Theorem 3.4.4 (Recorder Security of EZ+). The Enhanced Encrypt Zero Protocol with pa-

rameter m = 2n and any possibly malicious KeeperK∗ is perfectly secure for the Recorder.

Proof. Notice that regardless of theKeeper’s state stateK∗ (even if one of amaliciousKeeper),

� is always random conditioned on stateK∗ and s, since it is solely sampled by the Recorder.

Therefore, (Σ|ϕ) is already random encryptions of 0 conditioned on stateK∗ and s. Hence,

to distinguish it from other random encryptions of 0, one can do no better than a random

guess. Thus, the advantage that any distinguisherD could have in distinguishing C and C′ is

0 as desired.

3.5 Two-Party Key-Agreement Protocol

Consider a pair of interactive PPT algorithmsΠ = (A,B). Each ofA,B take n as input. We

will let (a, b, trans) ← Π(n) denote the result of running the protocol on input n. Here, a

is the output of A, b the output of B, and trans is the transcript of their communication.

A two-party key-agreement protocol is a protocolΠ = (A,B)with the correctness prop-

erty that Pr[a = b] = 1. In this case, we will define k̂ = a = b and write (k̂, trans)← Π(n).

46

Additionally, we will require eavesdropping security:

Definition 3.5.1 (Eavesdropping Security of Two-Party Key-Agreement Protocol). We say

thatΠ is (S(n), ϵ)-secure if for all adversariesA that use at most S(n)memory bits,

| Pr[A(k̂, trans) = 1 : (k̂, trans)← Π(n)]

− Pr[A(k′, trans) = 1 : k′ ← Kn, (k, trans)← Π(n)]| ≤ ϵ.

In this section we demonstrate how we can use the Simple Encrypt Zero Protocol to

implement a two-party key-agreement protocol. For simplicity, we consider a key space of

one single bit.

Construction 3.5.1 (Two-Party Key-Agreement Protocol). For two parties P and Q try-

ing to derive a shared key k̂ ∈ {0, 1}, they will first run a Simple Encrypt Zero Protocol

EZ(n,m, λ = 1) with P as the Keeper and Q as the Recorder. At the end of the EZ proto-

col, P gets a key s, and Q gets an encryption of 0 using s, namely (Ψ|κ) (notice that κ is of

dimension λ × 1, and hence is a single bit here). To derive a shared key,Q sendsΨ to P . The

shared key is thusκ, which is known toQ, and is computable byP asκ = Ψ · s.

Remark 3.5.1. For key spaces {0, 1}d, we can simply tune the protocol to use λ = d, and that

will yield a shared key k̂ ∈ {0, 1}d.

Theorem 3.5.1. The two-party key-agreement protocol presented above is (Cn2,

O(2−αn/2))-secure against eavesdropping adversaries.

Proof. First, by the Keeper security of the EZ protocol, for adversaries with up to Cn2 mem-

ory bits for some C < 1
20 , H∞(s|viewR) ≥ Ω(αn). Subsequently, H∞(Ψ, s|viewR) ≥

47

Ω(αn). LetH : {0, 1}n×{0, 1}n → {0, 1} compute the inner product. Using the fact that

the inner product is a universal hash function and applying Lemma 3.2.1, we have

(H(Ψ, s),H, viewR) ≈ϵ/2 (U1,Ud, viewR),

where 1 + 2 log(1/ϵ) = Ω(αn). Solving for ϵ yields that ϵ = O(2−αn/2), i.e. an adver-

sary has advantage at most O(2−αn/2) in distinguishing H(Ψ, s) and U1. Recall that in the

eavesdropping security game for Two-Party Key-Agreement Protocols, the adversary need to

distinguish between actual derived keys k̂ = Ψ · s from random k′ sampled directly from the

key space {0, 1}. Observe that H(Ψ, s) = Ψ · s = k̂, and k′ is drawn from U1. Therefore,

we have

| Pr[A(k̂, trans) = 1 : (k̂, trans)← Π(n)]

− Pr[A(k′, trans) = 1 : k′ ← Kn, (k, trans)← Π(n)]| ≤ ϵ = O(2−αn/2)

as desired.

3.6 Bit Commitment Scheme

Let n and λ be security parameters. A bit commitment schemeΠ consists of a tuple of algo-

rithm (Commit, Reveal, Verify) for a committer C and a verifier V .

• The Commit algorithm is run by the committer, and it takes as input the security pa-

rameter n and a bit b to be committed to. A transcript of the communication, a com-

48

mitter state, and a verifier state (trans, stateC, stateV) ← Commit(n, λ, b) is output

by the Commit algorithm.

• The Reveal algorithm is also run by the committer, and it takes as input a commit-

ter state stateC and a bit b′. It outputs a revealing, denoted as x, together with the

committed bit b′.

• The Verify algorithm is run by the Verifier and takes input a verifier state stateV and

outputs of a Reveal algorithm, (x, b′). It outputs a bit u.

There are two desired security properties for a bit commitment scheme, namely hiding and

binding. We will give out formal definitions below.

The hiding property of a bit commitment scheme essentially states that the committed

bit b should be hidden from the Verifier given the Verifier’s view after the Commit algo-

rithm. Notice that the Verifier’s view after the Commit algorithm consists of exactly trans

and stateV . Put formally:

Definition 3.6.1 (Hiding Property of a Bit Commitment Scheme). For some given security

parameters n, λ and a bit b, let (trans, stateC, stateV) ← Commit(n, λ, b), we say that the

bit commitment scheme is (S(n), ϵ)-hiding if for all Verifiers V with up to S(n)memory bits,

(b, trans, stateV) ≈ϵ (r, trans, stateV)

for random r uniformly sampled from {0, 1}.

The binding property of a bit commitment scheme essentially requires that a committer

is not able to open a commitment to both 0 and 1. Notice that this applies to all committers,

49

who can be potentially malicious. A malicious committerA can run an arbitrary Commit∗

procedure, which has no guarantees except that it produces some (trans, stateA, stateV).

Note that this Commit∗ procedure does not necessarily commit to a bit b, so it does not take

b as a parameter.

Definition 3.6.2 (Binding Property of a Bit Commitment Scheme). LetA be an adversary.

A plays the following game BindingA,Π(n, λ) for some given security parameters n and λ:

• TheadversaryA runs anarbitrary commit procedure (potentiallymalicious)Commit∗(n, λ)

with an honest Verifier V and produces (trans, stateA, stateV).

• The adversary produces (x0, 0) and (x1, 1).

• The game outputs 1 if both Verify(stateV , (x0, 0)) and Verify(stateV , (x1, 1)) out-

put 1, and 0 otherwise.

We say thatΠ is ϵ-binding if for all adversaryA

Pr[BindingA,Π(n, λ) = 1] ≤ ϵ.

Nowwe present the construction for a bit commitment scheme using the Enhanced En-

crypt Zero Protocol.

Construction 3.6.1 (Bit Commitment Scheme from Parity Learning). For security parame-

ters n, λ and committer input bit b, we construct the bit commitment scheme by specifying each

of the (Commit, Reveal, Verify) algorithms.

• Commit(n, b): Runs the Enhanced Encrypt Zero Protocol EZ+(n, 2n, λ) with C as the

Keeper andV as the Recorder. Set trans to be the transcript of the EZ+ protocol, stateC to

50

be the output of C after the EZ+ protocol, i.e. a secret key s, and stateV to be the output of

V after the EZ+ protocol, namely (Σ|ϕ), which contains multiple encryptions of 0 under

the key s. Additionally, samples random γ ∈ {0, 1}2n, and sends (γ, c = γ · s+ b) to

the Verifier (notice that this also gets appended to trans).

• Reveal(stateC, b′): Outputs (x, b′) = (s, b′).

• Verify(stateV , x, b′): Checks that ϕ = Σ · x, and that c = γ · x + b′. If any of the

checks fail, output 0; otherwise, output 1.

Theorem 3.6.1. The bit commitment construction above is (Cn2,O(2−n/2))-hiding for some

C < 1/20.

Proof. First, by theKeeper security of the EZ+ protocol, for adversaries with up toCn2mem-

orybits for someC < 1
20 ,H∞(s|viewV) ≥ Ω(n). Recall that viewV is exactly (trans, stateV).

Subsequently, H∞(γ, s|trans, stateV) ≥ Ω(n). LetH : {0, 1}n × {0, 1}n → {0, 1} com-

pute the inner product. Using the fact that the inner product is a universal hash function

and applying Lemma 3.2.1, we have

(H(γ, s),H, trans, stateV) ≈ϵ/2 (U1,Ud, trans, stateV),

where 1+ 2 log(1/ϵ) = Ω(n). Furthermore, we have

(H(γ, s) + c,H, trans, stateV) ≈ϵ/2 (U1 + c,Ud, trans, stateV),

Solving for ϵ yields that ϵ = O(2−n/2), i.e. an adversary has advantage at mostO(2−n/2)

in distinguishingH(γ, s) + c andU1 + c. Notice thatH(γ, s) + c = γ · s+ c = b, and that

51

U1 + c is yet another uniformly random bit r← {0, 1}. Therefore, we have

(b,H, trans, stateV) ≈ϵ/2 (r,Ud, trans, stateV)

for ϵ = O(2−n/2) and r a uniformly random bit. Thus, by

(b, trans, stateV) ≈ϵ′ (r, trans, stateV)

for ϵ′ = 1
2O(2

−n/2) = O(2−n/2) and r a uniformly random bit, we have shown that the bit

commitment scheme presented above is (Cn2,O(2−n/2))-hiding as desired.

Theorem 3.6.2. The bit commitment scheme presented above is (2−λ)-binding.

Proof. We show that the scheme is statistically binding by arguing that the probability that

an adversary can win the Binding game is no more than 1
2λ .

Notice that in order for the adversary to win the game, the adversary need to output

(x0, 0) and (x1, 1) that both pass the Verify algorithm. Recall that the Verify Algortihm

checks for two things:

• c = γ · x0 + 0 and c = γ · x1 + 1 where c and γ are part of the transcipt trans and

are stored in the Verifier’s state stateV . This leads to that γ · x0 ̸= γ · x1 and hence

x0 ̸= x1.

• ϕ = Σ · x0 = Σ · x1 whereΣ and ϕ are sampled and computed by the Verfier and

stored in stateV . Notice this leads toΣ · (x0 − x1) = 0.

52

Now let x′ = x0− x1. From x0 ̸= x1, we know that x′ ̸= 0. Therefore, we need to find a

non-trivial root for the equationΣ · x′ = 0. Recall that by the Recorder’s perfect security of

the EZ+ protocol, the matrixΣ stored in stateV is random conditioned on the Committer’s

view. For each row ofΣ, denoted asΣi for the i-th row, the probability thatΣi · x′ = 0 is no

more than a random guess, i.e. 1
2 . Since to pass the Verify algorithm requiresΣ · x′ = 0,

i.e. Σi · x′ = 0 for all i = 1, 2, . . . , λ, and recall that the rows of Σ are independent, the

probability that the adversary can find such a x′ is no more than (12)
λ = 1

2λ .

3.7 Oblivious Transfer Protocol

In an oblivious transfer (OT) protocol, one party, the SenderS , has two input bits x0, x1, and

the other party, known as the ReceiverR′ (not to be confused with the RecorderR in the

Encrypt Zero Protocols), has an input bit b. After some communication between the two

parties, R′ outputs xb. The OT protocol requires two security properties, namely Sender

security and Receiver security. Sender security dictates thatR′ should have no information

about x1−b, and Receiver security requires that S has no information about b.

Before we proceed to our construction of an OT protocol, we first formally define these

two security properties.

The security of the Sender ensures that an adversarial Receiver can learn about at most

one of x0 and x1. In other words, there always exists a b′ s.t. the Receiver has no information

about xb′ . Put formally:

Definition 3.7.1 (Sender Security). AnOT protocol is said to be ϵ-secure for the Sender if there

53

exists some b′ s.t. for any arbitrary distinguisher D and Receiver’s view viewR′ ,

∣∣Pr[DviewR′ (xb′) = 1]− Pr[DviewR′ (r) = 1]
∣∣ ≤ ϵ

for a uniformly random bit r.

The security of the Receiver requires that the sender S has no information about b. In

other words, given the view of the Sender, one should not be able to distinguish between b

and a random bit r. Put formally:

Definition 3.7.2 (Receiver Security). Let viewS denote the view of the sender, the OT protocol

Π is said to be (S(n), ϵ)-secure for the Receiver if for all possible Senders that use up to S(n)

memory bits,

(b, viewS) ≈ϵ (r, viewS),

where r is a uniformly random bit.

Nowwe give out our construction of the OT protocol.

The key idea is that the Receiver will send a commitment of its bit b to the Sender. And

the Sender therefore uses the additive homomorphism of Raz’s encryption scheme to com-

pute the encryptions of (1−b)x0 and bx1. The Sender further re-randomizes these two cipher-

texts by adding fresh encryptions of zero before sending them to the Receiver. The Receiver

decrypts these two ciphertexts and obtains 0 and xb as desired.

Construction 3.7.1 (Oblivious Transfer Protocol from Parity Learning). For given security

parameter n, a Sender S and a receiverR′:

54

• Run an Enhanced Encrypt Zero Protocol EZ+(n, 2n, λ = 2)withR’ as the Keeper and

S as the Recorder. At the end of the protocol,R′ has as output a secret key s, and S has

output (Σ|ϕ), which consists of two encryptions of 0 under the key s. Additionally,R′

samples randomγ ∈ {0, 1}2n, and sends (γ, c = γ · s+b) to the Sender. Kindly notice

that in this step the ReceiverR′ is actually just executing Commit(n, b).

• For Sender S , letσ0,σ1 be the first and second row ofΣ, and ϕ0, ϕ1 be the two elements

in ϕ. Notice that ϕ0 = σ0 · s and ϕ1 = σ1 · s. The Sender then sends to the Receiver

two ciphertexts:

σ0 + x0γ, ϕ0 + x0(1− c) = (σ0 + x0γ) · s+
(
(1− b)x0

)
σ1 + x1γ, ϕ1 + x1c = (σ1 + x1γ) · s+

(
bx1

)
.

• R′ decrypts both ciphertexts that it has received using the key s, and learns (1− b)x0 and

bx1. Notice that one of these two values will be xb as desired and gets output byR′.

We then proceed to prove desired security properties for the above construction of the

OT protocol.

Theorem 3.7.1. The OT protocol described above is perfectly secure for the Sender.

Proof. Weshow that right after the first part of the protocolwhereR′ executesCommit(n, b),

there is a fixed b′ = c + γ · s + 1 such that the Receiver will have no information about xb′ .

Notice that this does not break Receiver security, since although b′ is fixed, S has no way to

compute b′ as s is only known to the ReceiverR′.

55

If b′ = c+ γ · s+ 1 = 0, we show that the Receiver has no information about x0, i.e. x0

is random given the Receiver’s view. Notice that we have 1 − c = γ · s. And hence the two

ciphertext that the Receiver receives are

σ0 + x0γ, ϕ0 + x0(1− c) = (σ0 + x0γ) · s

σ1 + x1γ, ϕ1 + x1c = (σ1 + x1γ) · s+ x1.

The only source that the Receiver might be able to gather information about x0 is from the

first ciphertext. However, since σ0 is uniformly random given the Receiver’s view, σ0 +

x0γ is also uniformly random given the Receiver’s view, i.e., it does not give any additional

information to the Receiver. The Receiver also gets no information from (σ0 + x0γ) · s,

as this value can be easily simulated by the Receiver since it knows both σ0 + x0γ and s.

Therefore, x0 is random given the Receiver’s view.

If b′ = c + γ · s + 1 = 1, by a similar argument, we have that x1 is random given the

Receiver’s view. Bringing these parts together, we have shown that for b′ = c+ γ · s+ 1, xb′

is random conditioned on the Receiver’s view, i.e.

∣∣Pr[DviewR′ (xb′) = 1]− Pr[DviewR′ (r) = 1]
∣∣ = 0.

Thus, the OT protocol above is perfectly secure for the Sender as desired.

Theorem 3.7.2. The OT protocol described above is (Cn2,O(2−n/2))-secure for the Receiver,

for some C < 1
20 .

56

Proof. The proof for this is extremely straightforward. As observed above, the receiverR′ is

exactly executing Commit(n, b), i.e. it is committing the bit b to the Sender, who is playing

the role of the Verifier in the commitment scheme. Hence, by the (Cn2,O(2−n/2))-hiding

property of the commitment scheme, we have that for all possible SenderS that uses at most

Cn2 memory bits,

(b, trans, stateS) ≈ϵ (r, trans, stateS)

for ϵ = O(2−n/2)) and auniformly randombit r. Notice thatviewS is actually just (trans, stateS).

Therefore, the above equation can be rewritten as

(b, viewS) ≈ϵ (r, viewS).

This is the exact definition for (Cn2, ϵ)-Receiver-security. Therefore, the OT protocol above

is (Cn2,O(2−n/2))-secure for the Receiver as desired.

57

4
Disappearing Cryptography in the

Bounded Storage Model

58

4.1 Introduction

The bounded storage model77 leverages bounds on the adversary’s storage ability to enable

secure applications. A typical bounded storagemodel schemewill involve transmittingmore

information than what the adversary can possibly store. One approach is then to use some

small piece of the transmission to perform, say, a one-time pad or other tasks. Since the ad-

versary cannot record the entire transmission, they most likely will not be able to recover

the small piece that is used, preventing attacks. Other approaches, say those based on taking

parities85,62, are also possible. In any case, the honest users’ space requirements are always

much less than the adversary’s storage bound; usually, if the honest parties have spaceN, the

adversary is assumed to have space up to roughlyO(N2).

The bounded storage model has mostly been used to give protocols with information-

theoretic, unconditional, and everlasting security; in contrast, the usual time-bounded ad-

versary model generally requires making computational assumptions.

A critical feature of the bounded storage model is that the large transmission cannot be

entirely stored by the adversary. This large transmission is then subsequently used in such

a way that whatever space-limited information the adversary managed to record about the

transmission will become useless. In this way, the large transmission is ephemeral, effectively

disappearing immediately after it is sent.

Most work in the bounded storage model uses this disappearing communication as a

tool to achieve information-theoretic security for primitives such as key agreement, com-

mitments, or oblivious transfer, for which computational assumptions are necessary in the

standard model. However, apart from insisting on statistical security, the security goals are

59

typically the same as standard-model schemes.

The goal of this chapter, in contrast, is to use such “disappearing” communication to

realize never-before-possible security goals, especially those that are impossible in the standard

model.

4.1.1 Motivating Examples

Example 1: Deniable Encryption. Deniable encryption28 concerns the following sce-

nario: Alice has the secret key sk for a public key encryption scheme. At some point, Bob

sends a ciphertext ct encrypting messagem to Alice. Charlie observes the ciphertext ct.

Later, Charlie obtains the ability to force that Alice reveals sk (say, through a warrant),

so that he can decrypt ct and learn the messagem. Alice wants to maintain the privacy of the

message m in this scenario, so she reveals a fake decryption key sk′, such that decrypting ct

with sk′ will result in a fake messagem′. This version of deniable encryption is called receiver

deniable encryption.

Unfortunately, as shown in Bendlin et al.15, such receiver deniable encryption is impossi-

ble for “normal” encryption where the ciphertext is just a single (concise) transmission from

Bob to Alice*. Prior works28,30 therefore consider a more general notion of encryption that

involves back-and-forth communication between the parties.

In this chapter, we consider a different solution: what if the ciphertext is so large that

it cannot be recorded by Charlie? Alice also cannot store the ciphertext in its entirety, but

she will be able to decrypt it live using her secret key. Charlie, who does not know the secret

key, will be unable to decrypt during the transmission. Then wemay hope that, even if Alice

*The deniable encryption literature often refers to such a scheme as having two-messages, as they consider
the transmission of the public key from Alice to Bob as the first message.

60

subsequently reveals the true secret key sk, thatCharliewill not be able to learn themessagem

since he no longer has access to ct. Such a scheme would immediately be deniable: Alice can

claim that ct encrypted any arbitrary message m′, and Charlie would have no way to verify

whether or not shewas telling the truth. Relative to the solution in priorwork, such a scheme

would then require only one-way communication, but at the expense of greatly increased

communication in order to ensure that Charlie cannot record all of ct. Such a schememight

make sense in a setting where Bob is unable to receive incoming communication.

Example2: Second-handSecretKeys. Consider an encryptedbroadcast servicewhere

a user may buy a decoder box which decrypts broadcasts. The content distributor wants

to enforce that for each decoder box, only one individual at a time can decrypt broadcasts.

Specifically, the content distributor is concerned about the following attack: Alice has a de-

coder box, and uses it to decrypt a broadcast live at broadcast time. Then, post broadcast, she

gives the box to Bob. Bob has previously stored the encrypted broadcast, and then feeds it

into the decoder box to receive the broadcast. The result is that two individuals are able to

use one box to decrypt the broadcast.

Our solution, again, is to imagine the ciphertexts being so long that they cannot be stored.

As such, Alice’s decoder box will be completely useless to Bob after the broadcast occurs.

Example 3: Non-interactive Security Against Replay Attacks. Consider a

scenario where instructions are being broadcast from a command center to a number of re-

cipients. Suppose that the recipients are embedded devices with limited capabilities; in par-

ticular, they cannot keep long-term state. We are concerned that an attacker may try to issue

malicious instructions to the recipients.

61

The natural solution is to authenticate the instructions, say by signing them. However,

this still opens up the possibility of a replay attack, where the adversary eavesdrops on some

signed instruction, and then later on sends the same instruction a second time, causing some

adverse behavior.

In the classical model with stateless recipients, the only way to prevent replay attacks

is with an interactive protocol, since a stateless recipient cannot distinguish the command

center’s original message and signature from the adversary’s replay. In a broadcast scenario,

interacting with each recipient may be impractical. Moreover, interaction requires the re-

cipients themselves to send messages, which may be infeasible, especially if the recipients are

low-power embedded devices.

As before, our idea is to have the signatures on the instructions be so large that the adver-

sary cannot record them in their entirety. The recipients can nonetheless validate the signa-

tures, but an adversary will be unable to ever generate a valid signature, even after witnessing

many authenticated instructions from the command center. The result is non-interactive

security against replay attacks.

Example4: SoftwareSubscription. The traditional softwaremodel involves the soft-

ware company sending the software tousers, who then run the software for themselves. Software-

as-a-Service, instead, has the software company centrally host the software, which the users

run remotely. The centralizedmodel allows for subscription-based software services—where

the user can only have access to the program bymaking recurring payments—that are impos-

sible in the traditional software model.

On the other hand, software-as-a-service requires the user to send their inputs to the soft-

ware company. While many technologies exist to protect the user data, this model inherently

62

requires interaction with the users.

We instead imagine the company sends its software to the users, but the transmissions

are so large that the users cannot record the entire program. Nevertheless, the users have the

ability to run the program entirely locally during the transmission, and do not have to send

any information to the software company. Then, once the transmission ends, the user will

be unable to further run the program.

Example 5: Overcoming Impossibility Results forObfuscation. Program ob-

fuscation is a form of intellectual property protection whereby a program is transformed so

that (1) all implementation details are hidden, but (2) the program can still be run by the

recipient.

Virtual Black Box (VBB) obfuscation, as defined by Barak et al.9, is the ideal form of ob-

fuscation: it informally says that having the obfuscated code is “no better than” having black

box access to the functionality. Unfortunately, Barak et al.show that such VBB obfuscation

is impossible. The counter-example works by essentially running the program on its own

description, something that is not possible just given oracle access. As a consequence, other

weaker notions have been used, including indistinguishability obfuscation (iO) and differing

inputs obfuscation9, as well as virtual grey box obfuscation (VGBO)18. These notions have

proven tremendously useful for cryptographic applications, where special-purpose programs

are designed to be compatible with the notion of obfuscation used. However, for securing

intellectual property inside general programs, these weaker notions offer only limited guar-

antees.

Our model for transmitting programs above may appear to give hope for circumventing

this impossibility. Namely, if the obfuscated program is so large that it cannot be recorded in

63

its entirety, thenmaybe it also becomes impossible to run the programon its owndescription.

4.1.2 Our Results

In this chapter, we explore the setting of disappearing cryptography, giving both negative and

positives results.

OnlineObfuscation. First, we propose a concrete notion of online obfuscation, which

is streamed to the recipient. We then explore what kinds of security guarantees we can hope

for, motivated by Examples 4 and 5 above.

First, we demonstrate that VBB obfuscation is still impossible inmost settings, assuming

the hardness of the Learning With Errors (LWE) problem. The proof closely follows the

Barak et al.proof in the case of circuits, but shows that it can be adapted to work on online

obfuscation. Thus we show that Example 5 is not possible.

This still leaves open the hope that online obfuscation can yield something interesting

that is not possible classically. We next define a useful notion of online obfuscation, mo-

tivated by the goal of classically-impossible tasks. Towards that end, we note that differing

inputs obfuscation is known to be a problematic definition48 in the standardmodel. We also

observe that indistinguishability obfuscation offers no advantages in the streaming setting

over the classical setting. We therefore settle on a notion of virtual grey box (VGB) obfus-

cation for online obfuscation. We formulate a definition of VGB obfuscation which allows

the recipient to evaluate the programwhile it is being transmitted, but then lose access to the

program after the transmission completes.

Wegive twocandidate constructionsofVGBonlineobfuscation, basedondifferent ideas.

We leave as an open question constructing a provably secure scheme.

64

Applications of Online Obfuscation. Next we turn to applications, establishing

VGB online obfuscation as a central tool in the study of disappearing cryptography, and pro-

viding techniques for its use. We show how to use VGB online obfuscation to realize each of

the Examples 1-3.

Specifically, assuming VGB online obfuscation (and other comparatively mild computa-

tional assumptions), we define and construct the following:

• Public key encryption with disappearing ciphertext security in the bounded storage

model. Here, ciphertexts are streamed to the recipient, and message secrecy holds

against adversaries with bounded storage*, even if the adversary later learns the secret

key. This immediately solves Examples 1 and 2.

• We generalize to functional encryption with disappearing ciphertext security, which

combines the disappearing security notion above with the expressive functionality of

functional encryption. This allows, for example, to combine the advantages of dis-

appearing ciphertext security with traditional functional encryption security goals of

fine-grained access control.

• Digital signatures with disappearing signature security, where signatures are streamed,

and the recipient loses the ability to verify signatures after the stream is complete. This

solves Example 3.

In the following, we expand and explain our results in more detail.

*We also require the usual polynomial time constraint of the adversary.

65

4.1.3 Defining Obfuscation in the Bounded StorageModel

Wefirst study obfuscation in the bounded storagemodel. We specifically imagine that obfus-

catedprograms are too large to store, but canbe streamed and run in low spacewhile receiving

the stream.

Negative Result for VBB Obfuscation. Our first result is that, virtual black box

(VBB) security remains impossible, even for this model. Recall that VBB security requires

that anything which can be efficiently learned from the obfuscated code can be efficiently

learned given just oracle access to the function. We follow the Barak et al.9 impossibility, but

take care to show that it still works for online obfuscation.

The Barak et al.impossibility works roughly as follows. Let (Enc,Dec) be a fully homo-

morphic encryption scheme. Choose random values α, β, γ as well as keys sk, pk for Enc,

and consider the following program:

P(x) =

pk,Enc(pk, α) if x = 0

β if x = α

γ ifDec(sk, x) = β

⊥ otherwise

An attacker with black box access to this program can learn pk and an encryption of α. But

to learn anything about β, they need to query onα; by the security of Enc, this is impossible.

Thus, the attacker cannot learn anything about γ.

On the other hand, an attacker with (perhaps obfuscated) code for P can homomorphi-

66

cally apply P to Enc(pk, α) to get Enc(pk, β). Then they can feed Enc(pk, β) into the pro-

gram to learn γ.

For online obfuscation, we show that this works, provided the attacker has access to three

sequential streams of the program. In the first stream the attacker evaluates on 0 to learn

pk,Enc(pk, α). In the second stream, it uses its evaluationprocedure and theprogramstream

to homomorphically evaluate P on Enc(pk, α), learning Enc(pk, β). Finally, in the third

stream it runs P on Enc(pk, β) to learn γ.

The only challenging part is the second stream. Here, weuse the evaluationprocedure for

the online obfuscation. Specifically, the evaluation procedure maintains a state, which is up-

dated as each bit of the stream comes in. We run the evaluation algorithm homomorphically

on the inputEnc(pk, α), bymaintaining an encrypted state, whichwe update homomorphi-

cally.

We then explain how to remove the final stream using Compute-and-Compare obfusca-

tion58,97, a technique used toward a similar goal in Ananth and La Placa6. The first stream

can also be removed in an auxiliary input setting, which is needed for most interesting ap-

plications. Thus, in the auxiliary input setting we obtain an impossibility even for a single

stream. The full proof is given in Section 4.3.

Defining Online Obfuscation. Above, we only considered the standard notions of

security, but for online obfuscation. We now seek to formulate a definition which captures

the goal of having the obfuscated program “disappear” after the stream is complete. Con-

cretely, we want that, after the stream is complete, it is impossible to evaluate the program on

any “new” inputs.

Our formalization of this is roughly as follows: we imagine the attacker gets the program

67

stream, and then later learns some additional information. We ask that any such attacker

can be simulated by an oracle algorithm. This algorithm makes queries to the program, and

then receives the same additional information the original adversary received. Importantly,

after the additional information comes in, the simulator can no longer query the program

any more.

Some care is needed with the definition. VBB security, which requires the simulator to

be computationally bounded, is impossible for the reasons discussed above. Indistinguisha-

bility obfuscation (iO) allows for a computationally unbounded simulator and thus avoids

the impossibility*. While iO is useful in the standard model, we observe that there is little

added utility to considering iO in the online model. Indeed, an unbounded simulator can

query the entire function on all inputs during the query phase, and thus has no need tomake

additional queries after receiving the additional information.

We therefore settle on a virtual grey box (VGB) notion of security18, where the simu-

lator is computationally unbounded, but can only make a polynomial number of queries.

The computationally unbounded simulator then receives the additional information, but

can make no more queries. Our full definition is in Section 4.2.

We note that it may be possible to also consider a version of differing inputs obfuscation

(diO) in our setting, but there is evidence that diOmay be impossible49. Sowe therefore stick

to VGB obfuscation.
*Concretely, it can break Enc to learn α.

68

4.1.4 Applications

Before giving our candidate constructions of VGB online obfuscation, we discuss applica-

tions.

Disappearing Ciphertext Security. We first demonstrate how to use online obfus-

cation to construct public key encryption where ciphertexts effectively disappear after being

transmitted. Concretely, we define a version of public key encryption where the attacker

gets to learn the secret key after the ciphertext is transmitted. We require that the attacker

nevertheless fails to learn anything about the message.

Our first attempt is the following, which essentially uses an online obfuscator as awitness

encryption scheme50: the public key pk is set, say, to be the output of a one-way function f

on the secret key sk. To encrypt a message m to pk, generate an online obfuscation of the

program P(sk′) which outputsm if and only if f(sk′) = pk. Decryption just evaluates the

program on the secret key.

For security, we note that, by the one-wayness of f, an attacker who just knows pk and

sees the ciphertext cannot evaluate the ciphertext program on any input that will reveal m.

Hence, m presumably remains hidden. Moreover, even if the attacker learns sk after seeing

the ciphertext, it should not help the attacker learnm, since the attacker no longer has access

to the program stream.

Formalizing this intuition, however, leads to difficulties. Suppose we have an adversary

A for the encryption scheme. We would like to useA to reach a contradiction. To do so, we

invoke the security of the online obfuscator to arrive at a simulatorS that can only query the

ciphertext program, but does not have access to the program stream. Unfortunately, this sim-

69

ulator is computationally unbounded, meaning it can invert f to recover sk at the beginning

of the experiment, and then query the program on sk.

Our solution is to replace fwith a lossy function83, which is a function with twomodes:

an injective mode (where f is injective) and a lossy mode (where the image of f is small). The

security requirement is that the two modes are indistinguishable.

We start with f being in the injective mode. In the proof, we first switch the ciphertext

program to output m if and only if sk′ = sk; by the injectivity of f this change does not

affect the functionality of the program. Hence, the simulator cannot detect the change (even

though it can invert f and learn sk for itself), meaning the adversary cannot detect the change

either.

In the next step, we switch f to being lossy, which cannot be detected by a computa-

tionally bounded attacker. We next change the ciphertext program again, this time to never

outputm. This only affects the program’s behavior on a single point sk. But notice that for

lossy f, sk is statistically hidden from the attacker, who only knows pkwhen the ciphertext is

being streamed. This means the simulator, despite being computationally unbounded, will

be unable to query on sk, meaning the simulator cannot detect the change. This holds true

even though the simulator later learns sk, since at this point it can no longer query the cipher-

text program. Since indistinguishability holds relative to the simulator, it also holds for the

original attacker. The full construction and proof are given in Section 4.4.

Extension to Functional Encryption. We can also extend disappearing ciphertext

security to functional encryption. Functional encryption allows users to obtain secret keys

for functions g, which allow them to learn g(m) from ciphertext encrypting m. The usual

requirement for functional encryption is that an attacker, whohas secret keys for functions gi

70

such that gi(m0) = gi(m1) for all i, cannot distinguish encryptions ofm0 from encryptions

ofm1.

In Section 4.6, we consider a similar notion, but where the requirement that gi(m0) =

gi(m1) only holds for secret keys in possession when the ciphertext is communicated. Even

if the attacker later obtains a secret key for a function g such that g(m0) ̸= g(m1), indistin-

guishability will still hold. Analogous to the case of plain public key encryption, this cap-

tures the intuition that the ciphertext disappears, becoming unavailable once the transmis-

sion ends.

We show how to combine standard-model functional encryption with online VGB ob-

fuscation to obtain functional encryption with such disappearing ciphertext security. The

basic idea is as follows. To encrypt a message m, first compute an encryption c of m under

the standard-model functional encryption scheme. Then compute an online obfuscation of

the programwhich takes as input the secret key skg for a function g, and decrypts c using skg,

the result being g(m).

This construction seems like it should work, but getting the proof to go through using

computationally unbounded simulators is again non-trivial. We show how to modify the

sketch above to get security to go through.

Disappearing Signatures. We next turn to constructing disappearing signatures, sig-

natures that are large streams that can be verified online, but then the signature disappears

after the transmission ends. We formalize this notion by modifying the usual chosen mes-

sage security game to require that the attacker (who does not know the signing key) cannot

produce a signature on anymessage, even messages that it previously saw signatures for.

We show how to construct such signatures in Section 4.5, using online obfuscation. An

71

additional building blockwe need is a prefix puncturable signature. This is a signature scheme

where, given the signing key sk, it is possible to produce a “punctured” signing key skx∗ which

can sign anymessage of the form (x,m) such that x ̸= x∗. We require that, even given skx∗ , no

message of the form (x∗,m) can be signed. Such prefix puncturable signatures can be built

from standard tools13.

We construct a signature schemewith disappearing signatures by setting the signature on

a message m to be an online obfuscation of the following program P. P has sk hardcoded,

and on input x outputs a signature on (x,m). To verify, simply run the streamed program

on a random prefix to obtain a signature, and then verify the obtained signature.

We then prove that an attacker cannot produce a valid signature stream on any message,

even messages for which it already received signature streams. For simplicity, consider the

case where the attacker gets to see a signature on a single messagem. Let x∗ be the prefix that

the verifier will use to test the adversary’s forgery. Note that x∗ is information-theoretically

hidden to the adversary at the time it produces its forgery. We will switch to having the sig-

nature program for m that rejects the prefix x∗. Since the program no longer needs to sign

the prefix x∗, it can use the punctured key skx∗ to sign instead. The only point where the

program output changes is on x∗. The simulator will be unable to query on x∗ (since it is

information-theoretically hidden), meaning the simulator, and hence the original adversary,

cannot detect this change.

Nowwe rely on the security of the puncturable signature to conclude that the adversary’s

forgery program cannot output a signature on any message of the form (x∗,m), since the

entire view of the attacker is simulated with the punctured key skx∗ . But such a signature is

exactly what the verifier expects to see; hence the verifier will reject the adversary’s program.

72

4.1.5 Constructing Online Obfuscation

We finally turn to giving two candidate constructions of online obfuscation. We unfortu-

nately do not know how to prove the security of either construction, which we leave as an

interesting open problem. However, we discuss why the constructions are presumably resis-

tant to attacks.

Construction 1: LargeMatrix Branching Programs. Our first construction is

based on standard-model obfuscation techniques, starting from Garg et al.47. As in Garg

et al.47, we first convert anNC1 circuit into a matrix branching program using Barrington’s

theorem12. In Garg et al.47, the program is then “re-randomized” following Kilian74 by left

and right multiplying the various branching program components with random matrices,

such that the randomization cancels out when evaluating the program. We instead first pad

thematrices to be very large, namely so large that honest users can record a single column, but

the adversary cannot write down the entire matrix. We then re-randomize the large padded

matrix.

We show that, if the matrix components are streamed in the correct order, honest users

can evaluate the program in low space. However, since the program is too large to write

down, malicious users will presumably be unable to evaluate the program once the stream

concludes.

Wenote that in the standardmodel, re-randomizing thebranchingprogram isnot enough

to guarantee security. Indeed, linear algebra attacks on the program matrices are possible, as

well as “mixed-input” attacks where multiple reads of the same input bit are set to differ-

ent values. Garg et al.47 and follow-up works block these attacks by placing the branching

73

programmatrices “in the exponent” of a cryptographic multilinear map.

In our setting, the large matrices presumably prevent linear algebra attacks. Moreover,

we show how to block mixed-input attacks by choosing the matrix padding to have a special

structure. While we are unable to prove the security of our multilinear-map-less scheme, we

conjecture that it nevertheless remains secure. The result is a plausibleVGBonline obfuscator

forNC1 circuits. Details are given in Section 4.7.

Construction2: Time-stamping. Our secondconstruction is basedon time-stamping78

in the bounded storage model. Here, a large stream is sent. Anyone listening can use the

stream to compute a time-stamp on any message. However, once the stream concludes, it

will be impossible to time-tamp a “new”message. The concrete security notion guarantees a

fixed (polynomial-sized) upper bound on the total number of stamped messages any adver-

sary can produce.

Our construction uses time-stamping, together with standard-model obfuscation. To

obfuscate a program P, first send the random stream. Then, compute a standard-model ob-

fuscation of the program P′, which takes as input x and a time-stamp for x, verifies the time-

stamp, and then runs P if the stamp is valid.

Assuming the standard model obfuscation is has VGB security, this construction should

be an online obfuscation with VGB security. The intuition is to start with a VGB simulator

for the standard-model scheme. This simulator is allowed to make queries at any time after

the obfuscation of P′ is generated, even after receiving the additional information. However,

the only useful queries to P′ are on inputs with valid time-stamps. The intuition is that, by

the security of the time-stamping scheme, it should be information-theoretically possible to

determine all the time-stamped messages that the adversary could possibly produce once the

74

stream concludes. The simulator will determine the possible queries, andmake each of them

while it has access to the program. All future queries by the simulator will then be rejected.

Unfortunately, we do not know how to actually rigorously prove that this construction

works. The difficulty is justifying that we can actually anticipate all valid time-stamps that

may be produced. We therefore leave formalizing the above intuition as an interesting open

question.

4.1.6 RelatedWork

Time-stamping in the bounded storage model78, as discussed above, is perhaps the first ap-

plication of the bounded storage model beyond achieving information-theoretic security.

We note, however, that non-interactive time-stamping was recently achieved in the standard

model using appropriate computational assumptions75.

Dziembowski45 consider a notion of forward-secure storage, which is very similar to our

notion of disappearing ciphertext security for encryption. A key difference is that their work

only considers the secret key case, and it is unclear how to adapt their constructions to the

public key setting.

Our notion of disappearing ciphertext security can be seen as achieving a notion of for-

ward security, where a key revealed does not affect the security of prior sessions. Forward

security has been studied in numerous standard-model contexts (e.g.38). However, standard-

model constructions of forward security (non-interactive) encryption such as29 always in-

volve updating the secret keys. Our construction does not require the secret key to be up-

dated.

75

4.2 Defining Obfuscation in the Bounded StorageModel

In this sectionwewill formally define online obfuscation (oO) and its corresponding security

notions, but before we start, we will first introduce an idea called a stream.

A stream s≫ is a sequence of bits sent from one party to another. Generally, we require

that the length of the stream, denoted as |s≫|, to be greater than the memory bound of the

users and adversaries. This means that a properly constructed stream can not be stored in its

entirety. However, algorithmsor programs can still take a streamas an input. Thismeans that

the algorithmor programwould operate in an onlinemanner - it actively listens to the stream

as the bits come in, and performs the computation simultaneously. We denote a variable as a

stream by putting a ”≫” in the subscript.

Definition 4.2.1 (Online Obfuscator). Let λ, n be security parameters. An online obfuscator

oO for a circuit class {Cλ} consists of a pair of uniform PPTmachines (Obf,Eval) that satisfy

the following conditions:

• Obf takes as input a circuit C ∈ Cλ, uses up to O(n)memory bits, and produces a stream

s≫ ← Obf(C).

• Eval takes as input a stream s≫ andan input x, uses up toO(n)memory bits, and outputs

y← Eval(s≫, x).

• For all C ∈ Cλ, for all inputs x, we have that

Pr [C(x) = y : s≫ ← Obf(C), y← Eval(s≫, x)] = 1.

76

To define security for an online obfuscator oO = (Obf,Eval), consider the following

two experiments:

1. ExpA,ch,oO(C ∈ Cλ, k):

• The experiment consists of an arbitrary number of rounds. At each round, one

of the following two scenarios happens:

– At an interaction round, the adversaryA interacts arbitrarily with the chal-

lenger ch.

– At a streamround, the adversaryA receives a fresh stream* of the obfuscated

circuit s≫ ← Obf(C). The challenger chwill receive a special tag notifying

it that a streaming has happened.

• The challenger chmay choose to terminate the experiment at any time by out-

putting a bit b ∈ {0, 1}, and bwill be the output of the program.

• Whenever the number of stream rounds is greater than k, the challenger ch im-

mediately outputs 0 and terminates the experiment.

2. ExpS,ch,oO(C ∈ Cλ, k, q):

• The experiment consists of an arbitrary number of rounds:

– At an interaction round, the simulator S interacts arbitrarily with the chal-

lenger ch.

*Notice that a fresh stream is sampled every time, so that no single stream is sent repeatedly.

77

– At a stream round, the simulatorSmay send up to q adaptive oracle queries

to the circuitC and receive corresponding responses. The challenger chwill

receive a special tag notifying it that a streaming has happened.

• The challenger chmay choose to terminate the experiment at any time by out-

putting a bit b ∈ {0, 1}, and bwill be the output of the program.

• Whenever the number of stream rounds is greater than k, the challenger ch im-

mediately outputs 0 and terminates the experiment.

Definition 4.2.2 (k-time Virtual Grey-Box (VGB) Security). Let λ, n be security parameters.

Let k be a fixed positive integer. For an online obfuscator oO to satisfy k-time Virtual Grey-Box

security, we require that there exists amemory bound S(n), such that for any challenger ch, and

any adversaryA that uses up to S(n)memory bits, there exists a computationally unbounded

simulator S s.t. for all circuits C ∈ Cλ:

| Pr[ExpA,ch,oO(C, k) = 1]− Pr[ExpS,ch,oO(C, k, q) = 1]| ≤ negl(λ),

where q = poly(λ).

The definitions for IndistinguishabilityObfuscation (iO) security andVirtual Black-Box

(VBB) security are obtained analogously by applying minor changes to the VGB security

definition.

Remark 4.2.1 (k-time iO Security). Wemodify Definition 4.2.2 to allow q = superpoly(λ)

to obtain the definition for k-time iO Security.

78

Remark 4.2.2 (k-time VBB Security). Wemodify Definition 4.2.2 to restrict S to be a PPT

simulator to obtain the definition for k-time VBB Security. We show in Section 4.3 that online

obfuscators with VBB security do not exist.

Remark 4.2.3 (1-timeVBB/VGB/iOSecurity). Under the special case where k = 1, we obtain

the definitions for 1-time VBB/VGB/iO security correspondingly.

Remark 4.2.4 (UnboundedVBB/VGB/iOSecurity). Under the special casewhere k = superpoly(λ),

we obtain the definitions for unbounded VBB/VGB/iO security correspondingly.

4.3 Impossibility of VBBOnline Obfuscation

In this section, we show that online obfuscation with VBB security does not exist in the

Bounded Storage Model if fully homomorphic encryptions and obfuscation of multi-bit

compute-and-compare programs exist. Note that both of these primitives can be built from

the assumption that the LearningWith Errors (LWE) problem is hard.

4.3.1 Fully Homomorphic Encryption

A Fully Homomorphic Encryption (FHE) scheme is a public key encryption scheme with

an additional Eval procedure that allows arbitrary computations on the ciphertexts.

Definition 4.3.1 (Fully Homomorphic Encryption). Let λ be the security parameter. A

fully homomorphic encryption scheme for circuit class {Cλ} is a tuple of PPT algorithmsΠ =

(Gen,Enc,Eval,Dec) with the following syntax.

• Gen(1λ) → (pk, sk) takes as input the security parameter λ, and outputs a public key

pk and a secret key sk.

79

• Enc(pk,m) → ct takes as input the public key pk and a message m ∈ {0, 1}∗, and

outputs a ciphertext ct.

• Eval(C, ct) → ct′ takes as input a circuit C ∈ Cλ and a ciphertext ct, and outputs an

evaluated ciphertext ct′.

• Dec(sk, ct) → m takes as input a private key sk and a ciphertext ct, and outputs a

decrypted message m.

In addition to the usual PKE correctness and security requirements (which don’t involve

Eval at all), we require correctness of homomorphic evaluations.

Definition 4.3.2 (Correctness ofHomomorphic Evaluations). A fully homomorphic encryp-

tion schemeΠ = (Gen,Enc,Eval,Dec) is correct for homomorphic evaluations if for all mes-

sages m and circuits C ∈ Cλ,

Pr

y = C(m) :

(pk, sk)← Gen(1λ)

ct← Enc(pk,m)

ct′ ← Eval(C, ct)

y← Dec(sk, ct′)

≥ 1− negl(λ).

Gentry, Sahai andWaters52 have shown how to construct such an FHE scheme assuming

the hardness of the LWE problem.

4.3.2 Obfuscation of Compute-and-Compare Programs

The idea of compute-and-compare programswas first raised byWichs andZirdelis97 in 2017.

Around the same time, the work of Goyal, Koppula andWaters58 essentially shows the same

80

result which they named “lockable obfuscation”, with some slight differences in presentation

and focus. Here, we will use the notion of multi-bit compute-and-compare programs from

Wichs and Zirdelis97.

Definition 4.3.3 (Multi-Bit Compute-and-Compare Program). Given a

function f : {0, 1}ℓin → {0, 1}ℓout , a target value y ∈ {0, 1}ℓout , and a message z ∈ {0, 1}ℓmsg ,

a multi-bit compute-and-compare program P is defined as follows:

Pf,y,z(x)=

z if f(x) = y

⊥ otherwise
.

Wichs and Zirdelis97 have shown that obfuscation of multi-bit compute-and-compare

programs exists, assuming the hardness of the LWE problem.

Lemma 4.3.1 (97). If the LWE problem is hard, then there exists an obfuscator (Obf,Eval)

for multi-bit compute-and-compare programs such that:

• For any multi-bit compute-and-compare program P and input x,

Pr [P(x) = w : P ← Obf(P),w← Eval(P , x)] = 1.

• For any multi-bit compute-and-compare program P with size parameters ℓin, ℓout, and

ℓmsg, if the target value y for P is chosen uniformly at random, then there exists a (non-

uniform) PPT simulator S , such that

Obf(P)
c
≈ S(ℓin, ℓout, ℓmsg).

81

4.3.3 Proof of VBB Impossibility

Theorem 4.3.1. If fully homomorphic encryptions and obfuscation of multi-bit

compute-and-compare programs exist, then online obfuscators with VBB security do not exist.

Proof. LetFHE = (Gen,Enc,Dec,Eval)be a secureFHEscheme. First, we runFHE.Gen(1λ)

to obtain (pk, sk), and sample uniformly at random α, β, γ ∈ {0, 1}λ. LetQ be a multi-bit

compute-and-compare program where f is the FHE decryption function FHE.Decwith the

secret key sk hardcoded in, and y = β and z = γ. Notice that we have:

Qβ,γ(x) =

γ if FHE.Decsk(x) = β

⊥ otherwise
.

LetQ be the obfuscated version ofQ and define the program P as follows:

Pα,β(x) =

FHE.Encpk(α),Q if x = 0

β if x = α

⊥ otherwise

.

We assume that there exists an online obfuscator oO with 2-time VBB security, and con-

sider the following adversaryA for the experiment ExpA,ch,oO(P, k = 2):

• In the first stream round,A receives a stream s≫ ← oO.Obf(P) and then computes

oO.Eval(s≫, 0), obtaining FHE.Encpk(α) andQ*.

*If there is an interaction round before the first stream round, during which the challenger sends
FHE.Encpk(α) andQ toA as auxiliary input, then we can build a similarA for the experiment with k = 1,
breaking the 1-time VBB security with auxiliary input.

82

• In the second stream round,A receives another stream s′≫ ← oO.Obf(P). A homo-

morphically evaluates P on ciphertext FHE.Encpk(α) by computing

FHE.Eval
(
oO.Eval(s′≫, ·),FHE.Encpk(α)

)
= FHE.Eval

(
P,FHE.Encpk(α)

)
= FHE.Encpk

(
P(α)

)
= FHE.Encpk(β).

• In the next interaction round,A runs the programQ on input FHE.Encpk(β) to ob-

tain γ. ThenA sends γ to the challenger.

VBB security of theonlineobfuscator requires that there exists a computationally bounded

simulator S for the experiment ExpS,ch,oO(P, k = 2, q = poly(λ)). Given the security of

the FHE scheme and that S is only allowed q = poly(λ) number of oracle queries to the

program P, with overwhelming probability S can obtain only FHE.Encpk(α) andQ in the

stream rounds. Notice that FHE.Encpk(α) does not depend on γ at all, and for the compu-

tationally bounded S , by lemma 4.3.1, Q is indistinguishable from a simulator that has no

knowledge of γ. Hence, the probability that S can send γ to the challenger is negligible, as

opposed toA, who always sends γ successfully. Therefore, a challenger can easily distinguish

between the two experiments, thus breaking the 2-time VBB security of the online obfusca-

tor.

83

4.4 Public Key Encryptionwith Disappearing Ciphertext Security

4.4.1 Definition

Wewill start by defining a security notion for public key encryption that we nameDisappear-

ing Ciphertext Security.

Essentially, it captures the security gamewhere the adversary is given the private key after

all of its queries but before it outputs a guess for the bit b. In traditional models, this defini-

tion does not make much sense, as the adversary can simply store the query responses, and

then later use the received private key to decrypt. However, in the bounded storage model,

the adversary cannot possibly store the ciphertexts, so even if the adversary is handed the pri-

vate key afterwards, it cannot possibly use it to decrypt anything.

Put formally, for security parameters λ and n, a public key encryption scheme in the

bounded storagemodel is a tuple of PPT algorithmsΠ = (Gen,Enc,Dec) that each uses up

to O(n)memory bits. The syntax is identical to that of a classical PKE, except that now the

ciphertexts are streams ct≫. For the security definition, consider the following experiment:

Disappearing Ciphertext Security Experiment DistDisCt
A,Π (λ, n):

• Run Gen(1λ, 1n) to obtain keys (pk, sk).

• Sample a uniform bit b ∈ {0, 1}.

• The adversaryA is given the public key pk.

• The adversaryA submits two messagesm0 andm1, and receives Enc(pk,mb), which

is a stream.

84

• The adversaryA is given the private key sk.

• The adversaryA outputs a guess b′ for b. If b′ = b, we say that the adversary succeeds

and the output of the experiment is 1. Otherwise, the experiment outputs 0.

Using this experiment, we are now able to formally define disappearing ciphertext secu-

rity.

Definition 4.4.1 (DisappearingCiphertext Security). Letλ, n be security parameters. A pub-

lic key encryption scheme Π = (Gen,Enc,Dec) has disappearing ciphertext security under

memory bound S(n) if for all PPT adversariesA that use at most S(n)memory bits:

Pr
[
DistDisCt

A,Π (λ, n) = 1
]
≤ 1

2
+ negl(λ).

Now we will show how to use online obfuscation to construct a public key encryption

schemewithdisappearing ciphertext security. One important tool thatwewill take advantage

of is lossy functions, which we will introduce in the following.

4.4.2 Lossy Function

Lossy functions are a subset of Lossy Trapdoor Functions due to Peikert and Waters83 that

do not require the existence of a trapdoor for the injective mode. To put formally:

Definition 4.4.2 (Lossy Function). Letλ be the security parameter. For ℓ(λ) = poly(λ) and

k(λ) ≤ ℓ(λ) (k is referred to as the “lossiness”) , a collection of (ℓ, k)-lossy functions is given by

a tuple of PPT algorithms (S, F) with the following properties. As short-hands, we have Sinj(·)

denote S(·, 1) and Slossy(·) denote S(·, 0).

85

• Easy to sample an injective function: Sinj outputs a function index s, and F(s, ·) com-

putes an injective (deterministic) function fs(·) over the domain {0, 1}ℓ.

• Easy to sample a lossy function: Slossy outputs a function index s, and F(s, ·) computes a

(deterministic) function fs(·) over the domain {0, 1}ℓ whose image has size at most 2ℓ−k.

• Hard to distinguish injective mode from lossy mode: Let Xλ be the distribution of s

sampled from Sinj, and let Yλ be the distribution of s sampled from Slossy, the two distri-

butions should be computationally indistinguishable, i.e. {Xλ}
c
≈ {Yλ}.

4.4.3 Construction

Here we present our construction of a PKE scheme with disappearing ciphertext security,

using online obfuscation and lossy function as building blocks.

Construction 4.4.1. Let λ, n be the security parameters. Let LF = (S, F) be a collection of

(ℓ, k)-lossy functions, and oO = (Obf,Eval) an online obfuscator with 1-time VGB security

under S(n)memory bound. The constructionΠ = (Gen,Enc,Dec) works as follows:

• Gen(1λ, 1n): Sample an injective function index fs from Sinj, and a uniform sk ←

{0, 1}ℓ. Compute y = F(s, sk) = fs(sk), and set pk = (s, y). Output (pk, sk).

• Enc(pk,m): Construct the program Pfs,y,m as follows:

Pfs,y,m(x) =

m if fs(x) = y

⊥ otherwise
.

86

Obfuscate the above program to obtain a stream ct≫ ← Obf(Pfs,y,m). The ciphertext is

simply the stream ct≫.

• Dec(sk, ct≫): Simply evaluate the streamed obfuscation using sk as input. An honest

execution yields Eval(ct≫, sk) = Pfs,y,m(sk) = m as desired.

4.4.4 Proof of Security

Nowwe show that if LF is a collection of (ℓ, k)-lossy functions with a lossiness k = poly(λ),

and oO is an online obfuscator with 1-time VGB security under S(n)memory bound, then

the above construction has disappearing ciphertext security under S(n)memory bound.

We organize our proof into a sequence of hybrids. In the very first hybrid, the adversary

plays the disappearing ciphertext security gameDistDisCt
A,Π (λ, n)where b is fixed to be 0. Then

we gradually modify the hybrids to reach the case where b = 1. We show that all pairs of

adjacent hybrids are indistinguishable from each other, and therefore by a hybrid argument

the adversary cannot distinguish between b = 0 and b = 1. This then directly shows disap-

pearing ciphertext security.

Sequence of Hybrids

• H0: The adversaryplays theoriginal disappearing ciphertext security gameDistDisCt
A,Π (λ, n)

where b = 0, i.e. it always receives Enc(pk,m0).

• H1: The same as H0, except that in Enc(pk,mb), we replace Pfs,y,mb with P′sk,mb
such

87

that

P′sk,mb
(x) =

mb if x = sk

⊥ otherwise
.

So now instead of checking the secret key by checking its image in the injective func-

tion, the program now directly checks for sk.

• H2: The same asH1, except that instead of sampling fs from Sinj, we nowuse fs′ sampled

from Slossy.

• H3: The same asH2, except that now we set b = 1 instead of 0.

• H4: Switch back to using injective fs instead of the lossy fs′ .

• H5: Switch back to using the original program Pfs,y,mb instead of P′sk,mb
.

Proof of Hybrid Arguments

Lemma 4.4.1. If the online obfuscator oO has 1-timeVGB security undermemory boundS(n),

then no (potentially computationally unbounded) adversary that uses up to S(n)memory bits

can distinguish between H0 and H1 with non-negligible probability.

Proof. This step actually only relies on indistinguishability obfuscation security of the ob-

fuscator oO, which is implied by its online VGB security. Notice that the only difference

betweenH0 andH1 is the program Pfs,y,mb and P′sk,mb
being obfuscated. Now notice that if fs

is injective, and that y = fs(sk), then fs(x) = y is equivalent to x = sk. Hence, Pfs,y,mb and

P′sk,mb
have the exact same functionality, i.e. on the same input x, their outputsPfs,y,mb(x) and

P′sk,mb
(x) are always the same. Then by the VGB (or even iO) security under memory bound

88

S(n), no adversary under memory bound S(n) should not be able to distinguish between the

obfuscations of these two programs with non-negligible probability.

Lemma 4.4.2. If LF is a collection of (ℓ, k)-lossy functions, then no PPT adversary can distin-

guish between H1 and H2 with non-negligible probability.

Proof. This step is quite straightforward. Notice that the only difference betweenH1 andH2

is that an injective fs is sampled in H1 while a lossy fs′ is sampled in H2. Therefore, the only

way an adversary can distinguish betweenH1 andH2 is by directly distinguishing fs from fs′ ,

which contradictswith the security of the lossy function that it is hard to distinguish injective

mode from lossy mode.

Put formally, we show how one can use an adversaryA that distinguishesH1 fromH2 to

construct an adversaryA′ that distinguishes between the injective mode and the lossy mode

of the lossy function.

A′ receives a distribution X of function indices s sampled from either Sinj or Slossy and

it needs to tell which mode the distribution is sampled from. A′ would run Gen(1λ, 1n),

except that now sample s directly from the distribution X. ThenA′ simulates the rest of the

disappearing ciphertext security game forA by playing the role of the challenger with fixed

b = 0. At the end of the game,A should be able to tell if it is inH1 orH2. IfA says it is in

H1,A′ claims thatX is sampled from Sinj, and ifA says it is inH2,A′ claims thatX is sampled

from Slossy.

Notice that ifX is sampled from Sinj, then the view ofA is identical to the one inH1, and

ifX is sampled from Slossy, the view ofA is identical to the one inH2. Therefore, ifA succeeds

in distinguishingH1 fromH2,A′ succeeds in distinguishing between the injective mode and

89

the lossy mode.

Lemma4.4.3. If the online obfuscator oO has 1-timeVGB security undermemory boundS(n),

and the lossiness k ofLF ispoly(λ), thenno (potentially computationally unbounded) adversary

undermemory bound S(n) candistinguish betweenH2 andH3 with non-negligible probability.

Proof. First, we show that if the lossiness k = poly(λ), the secret key sk is information theo-

retically hidden from the adversary before it is sent. Recall that y = F(s′, sk) = fs′(sk)where

fs′ is a lossy function. For fs′ , the size of the domain is 2ℓ, while the size of the range is only

2ℓ−k. This implies that for an image y of a random input, the number of possible pre-images

is at least 2k/2, except with probability at most 2−k/2. Now if the lossiness k is poly(λ), the

number of possible pre-images is exponential, except with negligible probability. Given that

the only constraint on sk is uniformly random conditioned on being a pre-image of y, it is

information theoretically unpredictable from the adversary.

Now since sk is information theoretically hidden, the program P′ is essentially a point

function on a random point. And the only difference between H2 and H3 is the output of

the point function. If an adversary is able to distinguish betweenH2 andH3, this means that

the adversary is able to distinguish the output of an obfuscated point function without even

knowing the point. This directly presents an adversaryA for the 1-time VGB security game.

In experiment ExpA,ch,oO, the adversary A is always able to obtain the output of an obfus-

cated point function. However, in game ExpS,ch,oO, the simulator S is only allowed to make

q = poly(λ) number of oracle queries to the point function. The probability that the sim-

ulator is able to obtain the output is only q/2k/2 = poly(λ)/2poly(λ) = negl(λ). Therefore,

the challenger can easily tell if it is interacting with the adversaryA or the simulatorS , which

90

contradicts with the 1-time VGB security of the online obfuscator.

Lemma 4.4.4. If LF is a collection of (ℓ, k)-lossy functions, then no PPT adversary can distin-

guish between H3 and H4 with non-negligible probability.

The proof of this lemma follows analogously from the one of Lemma 4.4.2.

Lemma 4.4.5. If the online obfuscator oO has 1-timeVGB security undermemory boundS(n),

then no (potentially computationally unbounded) adversary that uses up to S(n)memory bits

can distinguish between H4 and H5 with non-negligible probability.

The proof of this lemma follows analogously from the one of Lemma 4.4.1.

Theorem 4.4.1. If LF is a collection of (ℓ, k)-lossy functions with lossiness k = poly(λ), and

oO is an online obfuscation with 1-time VGB security under S(n) memory bound, then Con-

struction 4.4.1 has disappearing ciphertext security under S(n)memory bound.

Proof. The lemmas above show a sequence of a polynomial number of hybrid experiments

where no PPT adversary with S(n)memory bound can distinguish one from the next with

non-negligible probability. Notice that the first hybrid H0 corresponds to the disappearing

ciphertext security game where b = 0, and the last hybrid H5 corresponds to one where

b = 1. The security of the indistinguishability game follows.

91

4.5 Disappearing Signature Scheme

4.5.1 Definition

In this section, we define a public-key signature scheme in the bounded storagemodel which

we callDisappearing Signatures. The idea is that wemake the signatures be streams such that

one can only verify them on the fly, and cannot possibly store them. The security game re-

quirement is also different. Traditionally, for an adversary to win the signature forgery game,

the adversary would need to produce a signature on a fresh new message. However, in the

disappearing signature scheme, the adversary canwin evenbyproducing a signature on ames-

sage that it has previously queried. The catch here is that even though themessagemight have

been queried by the adversary before, the adversary has no way to store the valid signature on

the message due to its sheer size.

Put formally, for security parameters λ and n, a disappearing signature scheme consists

of a tuple of PPT algorithms Π = (Gen, Sig,Ver) that each uses up to O(n)memory bits.

The syntax is identical to that of a classical public key signature scheme, except that now the

signatures are streams σ≫. For the security definition, consider the following experiment:

Signature Forgery Experiment SigForgeA,Π(λ, n):

• Run Gen(1λ, 1n) to obtain keys (pk, sk).

• The adversaryA is given the public key pk.

• For q = poly(λ) rounds, the adversaryA submits a messagem, and receives σ≫ ←

Sig(sk,m), which is a stream.

92

• The adversary A outputs m′ and streams a signature σ′≫. The output of the experi-

ment is Ver(pk,m′, σ′≫).

Notice that traditionally,wewould requirem′ tobedistinct fromthemessagesm’s queried

before, but here we have no such requirement. With this experiment inmind, we now define

the security requirement for a disappearing signature scheme.

Definition 4.5.1. Let λ, n be security parameters. A disappearing signature scheme Π =

(Gen, Sig,Ver) is secure under memory bound S(n), if for all PPT adversariesA that use up

to S(n)memory bits,

Pr
[
SigForgeA,Π(λ, n) = 1

]
≤ negl(λ).

To construct such a disappearing signature scheme, one tool that we will use alongside

online obfuscation is a prefix puncturable signature.

4.5.2 Prefix Puncturable Signature

A prefix puncturable signature is similar to a regular public key signature scheme that works

for messages of the form (x,m), where x is called the prefix. Additionally, it has a puncturing

procedurePunc that takes as input the secret key sk and a prefix x∗, and outputs a punctured

secret key skx∗ . skx∗ allows one to sign any message of the form (x,m) with x ̸= x∗. The

security requirement is that, given skx∗ , one cannot produce a signature on any message of

the form (x∗,m).

To put formally, in addition to the usual correctness and security requirements of a sig-

nature scheme, we also have a correctness requirement and a security requirement for the

punctured key.

93

Definition 4.5.2 (Correctness of the Punctured Key). Let λ be the security parameter. We

require that for all m ∈ {0, 1}∗ and x, x∗ ∈ {0, 1}λ s.t. x ̸= x∗:

Pr

σ = σ′ :

(pk, sk)← Gen(1λ)

σ ← Sig(sk, (x,m))

skx∗ ← Punc(sk, x∗)

σ′ ← Sig(skx∗ , (x,m))

= 1.

Definition 4.5.3 (Security of the Punctured Key). Let λ be the security parameter. We re-

quire that for all x∗ ∈ {0, 1}λ and m ∈ {0, 1}∗, for all PPT adversariesA, we have

Pr

Ver(pk, (x∗,m), σ) = 1 :

(pk, sk)← Gen(1λ)

skx∗ ← Punc(sk, x∗)

σ ← A(skx∗ , pk, (x∗,m))

 ≤ negl(λ).

Bellare and Fuchsbauer13 have shown that such a signature scheme can be built from any

one-way function.

4.5.3 Construction

We now present our construction of the disappearing signature scheme.

Construction 4.5.1. Let λ, n be the security parameters. Let PPS = (Gen, Sig,Ver,Punc)

be a prefix puncturable signature scheme, and oO = (Obf,Eval) be an online obfuscator with

1-time VGB security under S(n)memory bound. The constructionΠ = (Gen, Sig,Ver)works

as follows:

94

• Gen(1λ, 1n): Run (pk, sk)← PPS.Gen(1λ), and output (pk, sk).

• Sig(sk,m): Construct the program P as follows:

Psk,m(x) = PPS.Sig(sk, (x,m)).

Obfuscate the above program to obtain a streamσ≫ ← Obf(P). The signature is simply

the stream σ≫.

• Ver(pk,m, σ≫): Sample a random prefix x∗ ∈ {0, 1}λ, and evaluate the streamed

obfuscated program using x∗ as input. This yields

σ∗ = Eval(σ≫, x∗) = PPS.Sig(sk, (x∗,m)).

Then, output PPS.Ver(pk, (x∗,m), σ∗) as the result.

Thecorrectness of the construction comesdirectly fromthe correctness of theunderlying

prefix puncturable signature scheme.

4.5.4 Proof of Security

Theorem 4.5.1. If PPS is a correct and secure prefix puncturable signature scheme, and oO

is an online obfuscator with 1-time VGB security under S(n) memory bound, then Construc-

tion 4.5.1 is secure under S(n)memory bound.

Proof. We prove the security of Construction 4.5.1 through a sequence of hybrids.

Recall what happens in the signature forgery game H0. At the end of the game, the ad-

versaryA outputs a messagem′ and a signature σ′≫. We verify it by sampling a random x∗ ∈

95

{0, 1}λ, obtainσ∗ = Eval(σ′≫, x∗) = PPS.Sig(sk, (x∗,m′)), and thenoutputPPS.Ver(pk,

(x∗,m′), σ∗).

Now imagine that inH1, we sample x∗ ∈ {0, 1}λ at the very beginning of the game. We

also obtain a punctured key skx∗ ← PPS.Punc(sk, x∗), whichwedon’t use yet. H1 shouldbe

indistinguishable fromH0 for any adversary, since x∗ and skx∗ are never sent to the adversary.

Then we move to H2, where we modify the way the signature is generated in response

to the adversary’s last query. Now instead of sending the obfuscation of the program P, we

send the obfuscation of the following program P′:

P′skx∗ ,m,x∗(x) =

PPS.Sig(skx∗ , (x,m)) if x ̸= x∗

⊥ otherwise
.

Notice that this program rejects the input x∗, but produces a valid signature on all other

inputs. The only point where P and P′ differ is on input x∗.

Note that before the obfuscation of P′ is streamed back to the adversary, x∗ is informa-

tion theoretically hidden. Therefore, to distinguish betweenH1 andH2, the adversary needs

to distinguish between two obfuscated programs which differ on a single input that is infor-

mation theoretically hidden. By the same argument as in Lemma 4.4.2, this would break the

1-time VGB security of the underlying online obfuscator. Therefore, no adversary with up

to S(n)memory bits can distinguish betweenH1 andH2 with non-negligible probability.

Nowwe repeat the process tomodify our response to the adversary’s second-to-last query

and obtainH3, all the way until we reachHq+1, where now all the signatures streamed to the

adversary use P′ instead of P. Since here we have a sequence of a polynomial number of

hybrids that no adversary with a S(n)memory bound can distinguish one from the next with

96

non-negligible probability, no adversary with a S(n) memory bound can distinguish Hq+1

from H0. Notice that in H0, the adversary plays the original security game. However, in

Hq+1, all the responses to the queries use P′ instead of P.

Now notice that the entire gameHq+1 can be simulated using only the punctured secret

key skx∗ . If an adversary is able to win this game, then we can use this adversary to obtain a

signature on (x∗,m) for somem, even if we only have skx∗ . This directly contradicts with the

security of the underlying prefixpuncturable signature scheme. Therefore, noPPTadversary

A with S(n) memory bound can win any of H0, H1, . . . , Hq−1. Since H0 is the original

signature forgery experiment, we conclude that Construction 4.5.1 is secure.

4.6 Functional Encryption

4.6.1 Definition

First we recall the adaptive security definition for functional encryption, which utilizes the

following experiment:

Functional Encryption Security ExperimentDistFEA,Π(λ):

• Run Setup(1λ) to obtain keys (mpk,msk) and sample a uniform bit b ∈ {0, 1}.

• The adversaryA is given the master public keympk.

• For a polynomial number of rounds, the adversary submits a circuit C ∈ {Cλ}, and

receives skC ← KeyGen(msk,C).

97

• The adversary A submits the challenge query consisting of 2 messages m0 and m1

s.t. C(m0) = C(m1) for any circuit C that has been queried before, and receives

Enc(mpk,mb).

• For a polynomial number of rounds, the adversary submits a circuit C ∈ {Cλ} s.t.

C(m0) = C(m1), and receives skC ← KeyGen(msk,C).

• The adversaryA outputs a guess b′ for b. If b′ = b, we say that the adversary succeeds

and the output of the experiment is 1. Otherwise, the experiment outputs 0.

Definition 4.6.1 (Adaptive Security). Afunctional encryption schemeΠ = (Setup,KeyGen,

Enc,Dec) is said to be secure if for all PPT adversariesA :

Pr
[
DistFEA,Π(λ) = 1

]
≤ 1

2
+ negl(λ).

Nowwe discuss howwe define functional encryption in the bounded storage model. As

we have seen in the PKE with disappearing ciphertext security construction, the core idea

here is similar: we now produce ciphertexts that are streams.

Concretely, for securityparametersλ andn, a functional encryption scheme in thebounded

storage model consists of a tuple of PPT algorithms Π = (Setup,KeyGen,Enc,Dec) that

each uses up to O(n)memory bits. The rest of the syntax is identical to that of the classical

FE scheme, except that now the ciphertexts ct≫ are streams. The correctness requirement

remains unchanged apart from the syntax change, but the security definition would need to

be supplemented with a memory bound for the adversary and a slightly different security ex-

periment DistFE-BSMA,Π . DistFE-BSMA,Π is identical (apart from syntax changes) to DistFEA,Π except

98

that for function key queries submitted after the challenge query, we no longer require that

C(m0) = C(m1).

Definition 4.6.2 (Adaptive Security in the Bounded Storage Model). A functional encryp-

tion scheme Π = (Setup,KeyGen,Enc,Dec) is said to be secure under memory bound S(n)

if for all PPT adversariesA that use at most S(n)memory bits:

Pr
[
DistFE-BSMA,Π (λ, n) = 1

]
≤ 1

2
+ negl(λ).

With these definitions in mind, we now present how one can construct a secure func-

tional encryption scheme in the bounded storage model using online obfuscation. The con-

struction will also be based on three classical cryptographic primitives: a Non-Interactive

Zero Knowledge (NIZK) proof system, a secure classical functional encryption scheme, and

a Pseudo-Random Function (PRF).

4.6.2 Construction

Construction 4.6.1. Let λ, n be the security parameters. Let NIZK = (P ,V) be a non-

interactive zero knowledge proof system, FE = (Setup,KeyGen,Enc,Dec) a functional en-

cryption scheme, PRF : {0, 1}w × {0, 1}∗ → {0, 1}w a pseudorandom function for w =

poly(λ), and oO = (Obf,Eval) an online obfuscatorwith 1-timeVGB security undermemory

bound S(n). We construct the functional encryption schemeΠ = (Setup,KeyGen,Enc,Dec)

as follows:

• Setup(1λ, 1n): Sample (mpk,msk) ← FE.Setup(1λ). Sample the common reference

string crs for theNIZK system. Output (mpk, crs) as the overall public key. Outputmsk

99

as the master secret key.

• KeyGen(msk,C): Sample random x, y ∈ {0, 1}w. Consider the following function:

FC,x,y(m, k) =

C(m) if k = ⊥ or PRF(k, (C, y)) ̸= x

⊥ otherwise
.

Compute skF ← FE.KeyGen(msk, FC,x,y). Also, produce a NIZK proof π that skF is

correctly generated, i.e. the tuple (mpk,C, x, y, skF) is in the language

Lmpk,C,x,y,skF :=

(mpk,C, x, y, skF)

∣∣∣∣∣∣∣
(mpk,msk)← FE.Setup(1λ)

skF ← FE.KeyGen(msk, FC,x,y)

 .

Output the function key as skC = (C, x, y, skF, π).

• Enc((mpk, crs),m): Compute c ← FE.Enc(mpk, (m,⊥)). Then consider the follow-

ing program that takes as input a function key skC = (C, x, y, skF, π):

Pc,mpk,crs(skC) =

FE.Dec(skF, c) ifNIZK.V(crs, (mpk,C, x, y, skF), π) = 1

⊥ otherwise
.

Obfuscate the above program to obtain a stream ct≫ ← Obf(P). The ciphertext is sim-

ply the stream ct≫.

• Dec(skC, ct≫) : Simply output Eval(ct≫, skC).

100

It should be easy to verify that an honest execution yields

Pc,mpk,crs(C, x, y, skF, π) = FE.Dec(skF, c) = FC,x,y(m,⊥) = C(m)

as desired.

4.6.3 Proof of Security

We prove the security of Construction 4.6.1 via a sequence of hybrid experiments.

Sequence of Hybrids

• H0: The adversary plays the functional encryption gameDistFE-BSMA,Π (λ, n)where b =

0, i.e. it always receives Enc(mpk,m0).

• H1: The same as H0, except that when answering the challenge query by the adver-

sary, we sample a random key k ∈ {0, 1}w. Notice that we don’t change anything

in the response to the challenge query yet. For any function key query that happens

after the challenge query, instead of sampling x ∈ {0, 1}w randomly, we set x =

PRF(k, (C, y)), where C is the circuit being queried on by the adversary.

• H2: The same as H1, except that when answering the challenge query, we compute

c′ ← FE.Enc(mpk, (mb, k)) instead of c← FE.Enc(mpk, (mb,⊥)).

• H3: The same asH2, except that now the crs and the proof π of the NIZK system are

generated by the NIZK simulator.

• H4: The same asH3, except that now we set b = 1 instead of 0.

101

• H5: Switchback to the originalmethodof generating crs and theproofπ for theNIZK

system.

• H6: Switch back to use c instead of c′.

• H7: Switch back to sampling random x for the function key queries that happen after

the challenge query.

Proof of Hybrid Arguments

Lemma 4.6.1. If PRF is a secure pseudorandom function, then no PPT adversary can distin-

guish between H0 and H1 with non-negligible probability.

Proof. Notice that only difference betweenH0 andH1 is that instead of sampling a random x,

x is computed asPRF(k, (C, y))where k is unknown to the adversary. The indistinguishabil-

ity betweenH0 andH1 comes directly from the pseudorandomness of the underlying PRF.

Concretely, we show how on can use an adversary A that distinguishes H0 from H1 to

construct an adversaryA′ that distinguishes the underlying PRF from a truly random func-

tion. When A′ is given a function f in question, A′ would simulate for A the functional

encryption security game DistFE-BSMA,Π with b = 0 . The only difference is that once after

A has sent the challenge query, in the following function key queries, A′ would sample a

random y, and compute the x’s as x = f(C, y). Notice that in the case where f is a PRF,

we would have x = PRF(k, (C, y)), whereas if f is a truly random function, we would end

up having a uniformly random x. Notice that these two cases exactly corresponds toH1 and

H0, respectively. If A determines that it is in H0, A′ outputs that the function f is a truly

random function. Otherwise,A′ claims that the function f is a pseudorandom function. If

102

A succeeds with a non-negligible probability,A′ succeeds with non-negligible probability as

well.

Lemma4.6.2. If theNIZK system is statistically sound,PRF is a secure pseudorandomfunction

against non-uniform attackers, and the online obfuscator oO has 1-time VGB security under

memory bound S(n), then no PPTadversarywithmemory bound S(n) can distinguish between

H1 and H2 with non-negligible probability.

Proof. The difference betweenH1 andH2 is that we now use c′ instead of c. However, notice

that c and c′ are never used directly, but only hardcoded into the program P. Therefore, the

only way that an adversary can distinguish between H1 and H2 is by distinguishing the two

obfuscated programs. Let P be the program obfuscated in H1 that has c hardcoded and P′

be the program obfuscated in H2 with c′ hardcoded. Let us consider how P and P′ differ in

functionality.

Notice that NIZK.V(crs, (mpk,C, x, y, skF), π) does not depend on c or c′, so P and P′

will always fall into the same branch. Without loss of generality, here we consider the non-

trivial branch,where theNIZKproof verifies correctly and theprogramoutputsFE.Dec(skF, c).

Since theNIZK proof checks out and that theNIZK system has statistical soundness, we have

that skF is a correctly generated functionkey. Therefore, theprogramPoutputsFE.Dec(skF, c) =

FC,x,y(m,⊥), and the programP′ outputs FC,x,y(m, k). Notice that FC,x,y(m,⊥) always yields

C(m), and that FC,x,y(m, k) yields C(m) unless PRF(k, (C, y)) = x. In other words, P and

P′ always have the same output except for on inputs where PRF(k, (C, y)) = x.

Now recall that as the obfuscated program is being streamed, k has just been freshly sam-

pled and not used anywhere else. Therefore, k is information theoretically hidden from the

103

adversary. Since PRF is a pseudorandom function against non-uniform attackers, the value

of PRF(k, (C, y)) should also be information theoretically hidden from the adversary. Now

that we have P and P′ differing only on inputs that are information theoretically hidden, by

a similar argument as in Lemma 4.4.2, by the 1-time VGB security of the online obfuscator,

any PPT adversary undermemory bound S(n) should not be able to distinguish between the

obfuscations of P and P′ with non-negligible probability. Consequently, no PPT adversary

with memory bound S(n) can distinguish betweenH1 andH2 with non-negligible probabil-

ity.

Lemma 4.6.3. If the NIZK system is zero-knowledge, then no PPT adversary can distinguish

between H2 and H3 with non-negligible probability.

This lemma follows directly from the definition of zero-knowledgeness forNIZK.

Lemma 4.6.4. If the underlying functional encryption scheme FE is secure, then no PPT ad-

versary can distinguish between H3 and H4 with non-negligible probability.

Proof. The only difference betweenH3 andH4 is that a different value of c is computed. In

H3, c ← FE.Enc(mpk, (m0, k)), while in H4, c ← FE.Enc(mpk, (m1, k)). We show that

if an adversary A can distinguish between H3 and H4, then there is an adversary A′ for the

DistFEA′,Π game that usesA as a subroutine:

• WhenA′ receives the public keympk from the challenger, use the NIZK simulator to

sample the crs, and send (mpk, crs) toA.

• WheneverA submits a function key query for circuitC before the challenge query,A′

samples random x, y, and sends FC,x,y to the challenger. In response, A′ receives skF.

104

A′ then runs the NIZK simulator to produce the proof π. A′ sends (C, x, y, skF, π)

back toA.

• WhenA submits a challenge query withm0 andm1,A′ samples k and sends (m0, k)

and (m1, k) as its own challenge query to the challenger. WhenA′ receives the cipher-

text c,A′ constructs Pc,mpk,crs and sends the obfuscation of P back toA.

• For function key queries received after the challenge query, follow the same procedure

as above, except that now use x = PRF(k, (C, y)).

• IfA says that it is inH3, output 0. Otherwise, output 1.

We verify that theDistFEA′,Π game thatA′ plays is valid: (1) For all the function key queries

F that are sent before the challenge query, either FC,x,y(m0, k) = C(m0) = C(m1) =

FC,x,y(m1, k), or FC,x,y(m0, k) = FC,x,y(m1, k) = ⊥. (2) For all function key queries F that are

sent after the challenge query, FC,x,y(m0, k) = FC,x,y(m1, k) = ⊥.

Notice that A′ simulates the exact game for A where it needs to distinguish between

H3 and H4. So if A succeeds with non-negligible probability, A′ also succeeds with non-

negligible probability, which contradicts with the security of the underlying FE scheme.

Thus, by the security of the underlying FE scheme, no PPT adversary can distinguish

betweenH3 andH4 with non-negligible probability.

Lemma 4.6.5. If the NIZK system is zero-knowledge, then no PPT adversary can distinguish

between H4 and H5 with non-negligible probability.

This lemma follows directly from the definition of zero-knowledgeness forNIZK.

105

Lemma4.6.6. If theNIZK system is statistically sound,PRF is a secure pseudorandomfunction

against non-uniform attackers, and the online obfuscator oO has 1-time VGB security under

memory bound S(n), then no PPTadversarywithmemory bound S(n) can distinguish between

H5 and H6 with non-negligible probability.

The proof of this lemma follows analogously from the one of lemma 4.6.2.

Lemma 4.6.7. If PRF is a secure pseudorandom function, then no PPT adversary can distin-

guish between H6 and H7 with non-negligible probability.

The proof of this lemma follows analogously from the one of lemma 4.6.1.

Theorem 4.6.1. If NIZK is zero-knowledge and statistically sound, PRF is a secure pseudo-

random function against non-uniform attackers, FE is a secure functional encryption scheme,

and the online obfuscator oO has 1-time VGB security under S(n)memory bound, then Con-

struction 4.6.1 is secure under S(n)memory bound.

Proof. The lemmas above show a sequence of a polynomial number of hybrid experiments

where no PPT adversary with S(n)memory bound can distinguish one from the next with

non-negligible probability. Notice that the first hybridH0 corresponds to the functional en-

cryption security game where b = 0, and the last hybridH7 corresponds to one where b = 1.

The security of the construction follows.

106

4.7 Candidate Construction 1

4.7.1 Matrix Branching Programs

Amatrix branching programBP of length h, widthw, and input length ℓ consists of an input

selection function inp : [h]→ [ℓ], 2hmatrices{Mi,b ∈ {0, 1}w×w}i∈[h];b∈{0,1}, a left bookend

that is a rowmatrix s ∈ {0, 1}1×w, and a right bookend that is a columnmatrix t ∈ {0, 1}w×1.

BP is evaluated on input x ∈ {0, 1}ℓ by computing BP(x) = s
(∏

i∈[h]Mi,xinp(i)

)
t.

We say that a family of matrix branching programs are input-oblivious if all programs in

the family share the same parameters h, w, ℓ, and the input selection function inp.

Lemma 4.7.1 (Barrington’s Theorem12). For a circuit C of depth d where each gate takes at

most 2 inputs, we can construct a corresponding matrix branching program BP with width 5

and h = 4d.

4.7.2 The Basic Framework

Here we present the basic framework of an online obfuscator based on matrix branching

programs. Our frameworkwill be parameterized by a randomized procedureConvert, which

takes as input a log-depth circuitC andwidthw, and produces a branching programof length

h = poly(λ) and width w. w will be chosen so that the honest parties only needO(w) space

to evaluate the program as it is streamed, while security is maintained even if the adversary

has up to Cw2 space, for some small constant C.

Since the branchingprogramBPwill be too large for a space boundedobfuscator towrite

down, we will assume that there is a local, space-efficient way to compute each entry of the

branching program, given the circuit C and the random coins of Convert.

107

Note that Barrington’s theorem implies, for log-depth circuits, that h = poly(λ) and

thatw can be taken as small as 5. Convert can be thought of as some procedure to expand the

width to match the desired space requirements, and also enforce other security properties, as

discussed in Section 4.7.3, where we discuss our particular instantiation of the framework.

Our basic framework actually consists of three schemes. As we will demonstrate, the

three schemes have equivalent security, under the assumed existence of a pseudorandom

function. The first scheme is much simpler, highlights the main idea of our construction,

and allows us to more easily explore security. The downside of the first scheme is that the

obfuscator requires significant space, namely more than the adversary. We therefore present

two additional schemes with equivalent security, where the final scheme allows the obfusca-

tor to run in spaceO(w), while having equivalent security to the original scheme.

Constructionwith Kilian Randomization.

We start with the first and simpler scheme, denoted OKil, that uses randomization due to

Kilian74 to construct a matrix branching program BP′ as follows.

Sample random invertible matrices Ri ∈ {0, 1}w×w for i = 0, 1, . . . , h. Compute

M′i,b = R−1i−1Mi,bRi for i ∈ [h] and b ∈ {0, 1}. Additionally, compute new bookends

s′ = s · R0, and t′ = R−1h · t. The new randomized matrix branching program is now

BP′ = (inp, {M′i,b}i∈[h];b∈{0,1}, s′, t′). Notice that when we compute BP′(x), these ran-

dom matrices will cancel each other out and hence the output of the program should be

unchanged.

Now to turn BP′ into an online obfuscator, all we need to do is to properly stream the

branching program. Here we specify the order that the matrices will be streamed:

108

s′,M′1,0,M′1,1,M′2,0,M′2,1, . . . ,M′h,0,M′h,1, t′.

When streaming a matrix M, we require that the matrix M is streamed column by col-

umn, i.e. we start by sending the first column ofM, followed by the second column, then the

third, so on and so forth.

Now let’s take a look at how to evaluate the obfuscated program, i.e. the matrix branch-

ing program sent over the stream. Notice that we would need to do this using only space

linear to w.

To evaluate the program, we will keep a row matrix v ∈ {0, 1}1×w as our partial result.

When the streaming begins, we will set v = s′ received over the stream.

For i ∈ [h], we will compute b = xinp(i) and listen to the stream ofM′i,b. Let the columns

of M′i,b be c1, c2, . . . , cw. Since M′i,b is streamed column by column, we will receive on the

stream c1, c2, . . . , cw. As the columns are being streamed, wewill compute an updated partial

result v′ = (v1, v2, . . . , vw) on the fly. As we receive cj for j ∈ [w], we would compute

vj = v · cj. After all the columns of M′i,b have been streamed and that v′ has been fully

computed, we set v = v′.

In the end after we receive t′, we output BP′(x) = v · t′.

Notice that throughout the evaluation process, we use at most 2wmemory bits, which is

linear to w.

However, one issue with this construction is that running the obfuscator requires com-

puting products of matrices of size w × w, and this inherently requires O(w2) space. Next

up, we will show how we can use pseudorandom functions (PRFs) to help us carry out the

randomization process using only space linear to w.

109

Constructionwith Elementary RandomRow and ColumnOperations.

We will now give an alternate construction based on elementary row operationsOER, which

will improve on the space requirements of the obfuscator. Namely, the obfuscator will still

have a large source of randomness, which we will assume can be queried many times. How-

ever, other than the randomness, the only additional space that is required will beO(w).

Since we are working mod 2, there is no scaling, so the only elementary row operations

are (1) Bi,j which adds row j to row i, and (2) Ci,j which swaps rows i, j. Bi,j,Ci,j are also

represented as matrices, obtained by performing the relevant row operation to the identity

matrix. Notice that Ci,j = Bi,j · Bj,i · Bi,j. Therefore, we consider just the Bi,j. Also notice

thatB−1i,j = Bi,j since we are workingmod 2. Finally, note thatBi,j corresponds to the column

operation which adds column i into column j. It will be convenient to let Bi,i to denote the

identity matrix.

OER will sample the Kilian randomizing matrices R from OKil by sampling a sequence

B(1), . . . ,B(τ) of row operations, and setting R =
∏τ

t=1 B(t) and R−1 =
∏1

t=τ B(t). Note

that each Bmatrix is specified by a pair (i, j) ∈ [w], i ̸= j. For each matrix Ri, we generate

such a sequence. We will explain how to sample the row operations shortly. First, we ex-

plain, given query access to theB’s (or really, the (i, j) pairs), how to compute the obfuscated

program stream.

We need to explain how to construct and stream BP′. To generate the bookend vector

s′ = s · R0, start with s′ = s, writeR0 as
∏τ

t=1 B(0,t), interpret each of the B(0,t) as a column

operation, and apply the appropriate column operation to s′ in order from t = 1, . . . , τ . To

generate the other bookend vector t′ = Rh · t, we start with t′ = t, writeR−1h as
∏1

t=τ B(h,t),

interpret each of the B(h,t) as a row operation, and apply the appropriate row operation to t′.

110

Both operations clearly take only spaceO(w), in addition to the storage requirements for the

Bmatrices.

For theM′i,b = R−1i−1Mi,bRi, more care is needed. First, we need a sub-routine which, for

input α, computes rα, the α-th row ofMi,b · Ri. This sub-routine works almost exactly the

same as our computation of s′ above. The β-th entry of rα gives the entry (α, β) ofMi,b ·Ri.

We can thus compute cβ , the β-th column ofMi,b ·Ri, element by element.

To compute an entry (α, β) ofM′i,b, we first compute the corresponding column cβ . We

then compute c′β = R−1i−1 · cβ , analogous to how we computed t′. Then we output entry α

of c′β .

Now we explain how to sample the sequence B(1), . . . ,B(τ). We will use the following

lemma:

Lemma 4.7.2. There exist constants C0,C1 such that the following is true. For every w, there

exists a sequence of integers d1, . . . , dτ and distributions D1, . . . ,Dτ , τ ≤ C0w, dt ≤ C1w,

where each Dt is a distribution over a sequence of dt of the Bmatrices. The guarantee is that if

the sequences B(t,1), · · · ,B(t,dt) are sampled from Dt (each sequence independently), thenR =∏τ
t=1

∏dt
i=1 B(t,i) is distributed identically to a uniform random R mod 2, conditioned on R

being invertible.

Proof. The proof follows ideas from Randall84.

The base case w = 1 is trivial: the only invertible matrix mod 2 is 1. So we set τ = 0 in

this case.

We now assume the lemma holds true for w− 1. Thus, there is a sequence of C0(w− 1)

distributions over sequences of C1(w − 1) row operations generating a random (w − 1) ×

(w− 1)matrixR′. We will constructR fromR′ as follows.

111

• First let

R0 =

 1 0

0 R′

 .

• Next, constructR1, which fills in the zeros of the first row with uniform random bits:

R1 =

 1 x

0 R′

 =

 1 x

0 I

 ·R0

for a random row vector x. Note that the matrix

 1 x

0 I

 can be constructed from

a sequence of w− 1 row operations. Also note thatR1 is a uniformly randommatrix,

conditioned on the first column being 10w−1 and the matrix being invertible. This

follows from the fact that, formatriceswith the givenfirst column, havingdeterminant

1 (the only invertible possibility mod 2) is equivalent to having det(R0) = 1. Thus, a

random invertiblematrix with the given first column is identical to choosing a random

x, and then choosing a random invertibleR0.

• Next, sample a random non-zero column vector y ∈ {0, 1}w \ 0w. Let C be any

invertible matrix such that y = C · 10w−1. As explained by84,C is actually a bijection

between the set of invertible matrices whose first column is y and the set of invertible

matrices whose first column is 10w−1.

Thus, settingR2 = C ·R1 will result in a uniformly randommatrixR2.

Note thatC can be taken to be constructed from a sequence ofw+2 of theBmatrices:

3 to swap the first columnwith some non-zero position of y, and thenw−1 additional

112

ones to fill in the remaining positions of y.

Thus, we can take dt ≤ w + 2, and we have that C0w = τ ≤ 2 + C0(w − 1). We can take

τ = 2w to solve the recurrence. This completes the proof.

Thus, we will use Lemma 4.7.2 to construct the distributions Dt, and then sample the

matrices B(t,i) from Dt. Lemma 4.7.2 shows that the Rmatrices, and hence the view of the

adversary, are indistinguishable.

Eliminating Space with PRFs.

We now turn to the final construction, which eliminates all butO(w) from the obfuscator’s

space requirements.

OPRF will work exactly as OER, except that instead of sampling truly random samples

from Dt, it will do the following. For each R matrix, it will sample a uniformly random

key k for a pseudorandom function PRF. Then matrix sequence B(t,i) will be computed as

Dt(·;PRF(k, t)). That is, it will use PRF(k, t) as the random coins needed by Dt. In this

way, it can generate the B(t,i) matrices on the fly, without having to store them. Since each

sequence of B matrices has size at most O(w), it can generate the matrices space efficiently.

By the security of the PRF, the following is immediate:

Lemma 4.7.3. For any choice of Convert, assuming PRF is a secure PRF andOKil is k-time

VGB secure when using Convert, thenOPRF is k-time VGB secure when using Convert.

Thus, it suffices to analyze OKil for a given choice of algorithm Convert; then we can

instantiateOPRF with Convert, and be guaranteed that security will carry over.

113

4.7.3 Instantiating Convert

Now we will discuss how we specifically instantiate Convert, constructing the branching

program BP for a circuit C that we plug into our framework.

Tomotivate our construction, we recall that Barrington’s theorem12 plusKilian random-

ization74 already provides some very mild security: given the matrices corresponding to an

evaluation on any chosen input x (which selects onematrix from eachmatrix pair), the set of

matrices information-theoretically hides the entire program, save for the output of the pro-

gram on x.

This one-time security, however, is clearly not sufficient for full security. For starters, the

adversary canperformmixed-input attacks, where it selects a singlematrix fromeachpair, but

formultiple reads of the same input, it chooses differentmatrices. This allows the attacker to

treat the branching program as a read-once branching program. Itmay be that, by evaluating

on such inputs, the adversary learns useful information about the program.

Another problem is linear-algebraic attacks. The rank of each matrix is preserved un-

der Kilian randomization. Assuming all matrices are full-rank (which is true of Barrington’s

construction), the eigenvalues ofMi,0 ·M−1i,1 are preserved under Kilian randomization.

In branching program obfuscation starting from47, multilinear maps are used to block

these attacks. In our setting, we will instead use the storage bounds on the attacker. First, we

observe thatRaz85 essentially shows that linear-algebraic attacks are impossible if the attacker

cannot even record the matrices being streamed. While we do not know how to apply Raz’s

result to analyze our scheme, we conjecture that for appropriately chosen matrices, it will be

impossible to do linear-algebraic attacks.

The next main problem is input consistency. To accomplish this, we will do the follow-

114

ing. We will first run Barrington’s theorem to get a branching program consisting of 5 × 5

matrices. We will then construct an “input consistency check” branching program, and glue

the two programs together.

As a starting point, we will construct a read-once matrix branching program BP1 (one

that reads each input bit exactly once) that outputs 0 on an all-zero or all-one input string,

and outputs 1 on all other inputs. Looking forward, we will insert this program into the

various reads of a single input bit: any honest evaluationwill cause the branching program to

output 0, whereas an evaluation that mixes different reads of this bit will cause the program

to output 1.

Matrix Branching Program BP1:

• The width, the length, and the input length of the branching program are all L.

• inp is the identity function, i.e. Mi,b reads xi as input.

• For i ∈ [L],Mi,0 = IL where IL is the L × L identity matrix. Mi,1 is the L × L

permutation matrix representing shifting by 1. Specifically,

Mi,1 =

0(L−1)×1 IL−1

1 01×(L−1)

 .

• The left bookend is s =

(
1 0 0 · · · 0

)
and the right bookend is t =(

0 1 1 · · · 1
)T

.

115

Wenowbriefly justifywhyBP1works as desired. Let 0 ≤ w ≤ Lbe theHammingweight

of the input x. Notice that when evaluating BP1(x), the number ofMi,1 matrices chosen is

exactly w, and the rest of the chosen matrices are allMi,0, the identity matrix. Therefore, the

product of all theMmatrices is equivalent to a permutation matrix representing shifting by

w. When this product is left-multiplied by s =
(
1 0 0 · · · 0

)
, we get a resulting row

matrix s′ that is equivalent to s right-shifted by w. Notice that s′ has a single 1 at position (w

mod L) + 1. When multiplying s′ by the right bookend t , the result will always be 1, unless

(w mod L) + 1 = 1. The only w values that satisfy (w mod L) + 1 = 1 are w = 0 and

w = L, which correspond to x = 0L and x = 1L respectively. HenceBP1 gives us the desired

functionality.

Next up, we will expand BP1 to a read-once matrix branching program BP2 with the

following functionality: for a set S of input bits, BP2 outputs 0 if and only if all the input

bits within S are identical (the input bits outside of S can be arbitrary). This is accomplished

by simply setting the matrices for the inputs in S to be from BP1, while the matrices for all

other inputs are just identity matrices.

Next, we describe a simple method of taking the “AND” of two matrix branching pro-

grams with the same length, input length and input function. Given matrix branching pro-

grams BPA = (inp, {MA
i,b}i∈[h];b∈{0,1}, sA, tA) and BPB = (inp, {MB

i,b}i∈[h];b∈{0,1}, sB, tB)

with length h and input length ℓ, we construct a new brancing program BPC such that

BPC = BPA(x) · BPB(x) for all inputs x:

116

Constructing BPC = AND(BPA,BPB):

• The length, the input length, and the input function ofBPC are also h, ℓ and inp,

respectively. The width of BPC is wC = wA · wB, where wA and wB are the widths

of BPA and BPB, respectively.

• For all i ∈ [h] and b ∈ {0, 1}, computeMC
i,b = MA

i,b ⊗MB
i,b where⊗ denotes the

matrix tensor product (Kronecker product). Notice that the widths ofMA
i,b,MB

i,b,

andMC
i,b are wA, wB, and wAwB as desired.

• The left bookend is sC = sA ⊗ sB, and the right bookend is tC = tA ⊗ tB.

Using the mixed-product property of matrix tensor products, it should be easy to verify

that BPC(x) = BPA(x) · BPB(x) as desired.

Next, letBP∗ be a random read-oncematrix branching programwith input lengthL and

widthm = poly(λ). We can sample such a branching program by uniformly sampling each

of its matrices and bookends.*

Wewill assume that theprogramcomputedbyBP∗ gives a pseudorandomfunction. This

is, unfortunately not strictly possible: write x = (x1, x2) for two contiguous chunks of input

bits x1, x2. Then the matrix
(
BP∗(x1, x2)

)
x1∈X1,x2∈X2

for any sets X1,X2 will have rank at

mostm. By setting X1,X2 to be larger thanm, one can distinguish this matrix consisting of

outputs of BP∗ from a uniformly random one. The good news is that this attack requires a

large amount of space, namelym2. If the attacker’s space is limited to be somewhat less than

*When this is later put through the basic framework, we would need to generate these random matrices
using a PRF. This would allow us to reconstruct it at a later point.

117

m2, this plausibly leads to a pseudorandom function. We leave justifying this conjecture as

an interesting open question.

Now consider the branching program BP3 = AND(BP2,BP∗). Notice that BP3 has

width nm and is equal to 0 on inputs xwhere ∀i, j ∈ S, xi = xj, and is equal toBP∗(x) on all

other x.

With these tools in hand, we are now ready to show how to enforce input consistency on

an existing matrix branching program.

Given a matrix branching program BP = (inp, {Mi,b}i∈[h];b∈{0,1}, s, t) with length h,

width w and input length ℓ, we construct the branching program BP′ as follow:

Input Consistent Branching Program BP′:

• BP′ has the same length h, input length ℓ, and input function inp. The width is

now w+mhwherem = poly(λ).

• For all j ∈ [ℓ], let Sj be the set of all reads of xj, i.e. Sj = {i|i ∈ [h], inp(i) = j}.

Construct the branching program BP
(j)
2 using the BP2 construction with input

length h and S = Sj. Overwrite the input function ofBP(j)
2 with inp so that it now

takes x ∈ {0, 1}ℓ as input. Notice that BP(j)
2 (x) = 0 if and only if all reads of the

j-th bit of x are identical.

Sample a fresh random matrix branching program BP(j)
∗ with length h, widthm,

input length ℓ and input function inp. Compute BP(j)
3 = AND(BP

(j)
2 ,BP(j)

∗).

Denote the matrices in BP(j)
3 as {M(j)

i,b}i∈[h];b∈{0,1}, and the bookends as s(j), t(j).

• For all i ∈ [h], and b ∈ {0, 1}, construct the matrixM′i,b by adding all theM
(j)
i,b ’s

118

to the diagonal as M′i,b = diag(Mi,b,M(1)
i,b , . . . ,M

(ℓ)
i,b). Notice that the width of

M′i,b is w+
∑

j∈[ℓ] m|Sj| = w+mh.

• The left bookend is now s′ =
(
s s(1) s(2) · · · s(ℓ)

)
and the right bookend

is now t′ =
(
tT

(
t(1)

)T (
t(2)

)T · · · (
t(ℓ)

)T)T

.

Notice that we have

BP′(x) = BP(x) +
∑
j∈[ℓ]

BP
(j)
3 (x) = BP(x) +

∑
j∈[ℓ]

BP
(j)
2 (x)BP(j)

∗ (x).

If all reads of the input x are consistent, then we have BP(j)
2 (x) = 0 for all j, and the

program outputs the original output BP′(x) = BP(x).

If the reads of the input x are not consistent, then BP
(j)
2 (x) = 1 for some j, and conse-

quently BP(j)
∗ (x) will be added to the program output. By our conjecture that BP(j)

∗ (x) acts

as a PRF to space-bounded attackers, we thus add a pseudorandom value to BP(x), hiding

its value. Thus, we presumably force input consistency. BP′ will be the output of Convert,

which we then plug into our framework.

4.8 Candidate Construction 2

Nowwepresent the second candidate construction fromdigital time-stamping and standard-

model obfuscation. The concept of a digital time-stamp was first introduced by Haber and

Stornetta66, and since then we have seen various instantiations of digital time-stamping sys-

119

tems. One construction of particular interest is by Moran, Shaltiel and Ta-Shma78, where

they construct a non-interactive time-stamping scheme in the bounded storage model. This

will be what we base our construction on.

Definition 4.8.1 (Non-InteractiveDigital Time-stamp in the Bounded StorageModel). Let

λ, n be the security parameters. A non-interactive digital time-stamp scheme in the bounded

storagemodel with stamp length ℓ = O(n) consists of a tuple of PPTalgorithmsΠ = (Stream,

Stamp,Ver) that each uses up to O(n)memory bits:

• Stream(1λ, 1n)→ (s≫, k) takes as input security parameters λ, n and outputs a stream

s≫ and a short sketch k of the stream.

• Stamp(s≫, x)→ σ takes as input the stream s≫ and an input x ∈ {0, 1}∗, and outputs

a stamp σ ∈ {0, 1}ℓ.

• Ver(k, x, σ) → 0/1 takes as input the sketch k, an input x ∈ {0, 1}∗ and a stamp σ

and outputs a single bit 0 or 1.

We require correctness and security of the digital time-stamp scheme.

Definition 4.8.2 (Correctness). We require that for all x ∈ {0, 1}∗, we have

Pr
[
Ver(k, x, σ) = 1 : (s≫, k)← Stream(1λ, 1n), σ ← Stamp(s≫, x)

]
= 1.

For security, we ideally want that an adversary cannot produce a valid time-stamp on

an input x that the adversary did not run Stamp on. Instead, 78 notice that an adversary

with S(n)memory bits can store at most S(n)/ℓ time-stamps, and therefore define security

as upper bounding the number of time-stamps an adversary can produce. While not the

120

same as the ideal goal, it at least implies the adversary cannot produce arbitrary time-stamped

messages.

Definition 4.8.3 (Security). We require that for all adversaryA that uses up to S(n)memory

bits, we have

Pr

∀(x, σ) ∈M,Ver(k, x, σ) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

(s≫, k)← Stream(1λ)

M← AStamp(·)(s≫)

|M| > S(n)
ℓ

∀(x1, σ1), (x2, σ2) ∈M, x1 ̸= x2

≤ negl(λ).

Nowwe showhowwe canuse such a digital time-stamping scheme to construct an online

obfuscator.

Construction 4.8.1. Let λ, n be the security parameters. LetTSP be a digital time-stamping

scheme in the bounded storage model. Let VGB = (Obf,Eval) be a classical VGB obfuscator

for all circuits. We construct our online obfuscator for the circuit class {Cλ} as follows:

• Obf(C): Run TSP.Stream(1λ, 1n) to stream s≫ and obtain the sketch k. Consider the

following program PC,k:

PC,k(x, σ) =

C(x) ifTSP.Ver(k, x, σ) = 1

⊥ otherwise
.

Let P ← VGB.Obf(PC,k) be the standard-model VGB obfuscation of PC,k. The obfus-

cated program is simply the stream s≫ followed byP .

121

• Eval((s≫,P), x): To evaluate the obfuscated program, first computeσ ← TSP.Stamp(s≫, x)

when s≫ is being streamed. Then the output is simply VGB.Eval(P , (x, σ)).

Correctness is straightforward. One detail is that, using the time-stamping protocol of78,

the sketch k, and thus PC,k will be of size O(n) bits. Thus, we need to use an obfuscator

such that VGB.Obf only expands the program by a constant factor. We conjecture that the

constant-overhead construction of5 will work here. Alternatively, one can use branching-

program based obfuscation directly frommultilinear maps, for example47 and follow-ups.18

even gives evidence that these constructions may be VGB secure. The difficulty is that the

constructions blow up the input program by a polynomial factor, and therefore cannot be

written down. However, as they have the formof a branching program, they can be streamed

much the same way as we stream Candidate Construction 1. We therefore conjecture that

some instantiation of VGB.Obf will lead to a secure online VGB obfuscator that can also be

streamed in low space. We leave proving or disproving this conjecture as an open question.

122

5
Incompressible Cryptography

123

5.1 Introduction

Security breaches are ubiquitous. Therefore, it is natural to wonder: will encryptedmessages

remain secure, even if the secret decryption key is later leaked? Forward secrecy deals exactly

with this problem, but requires either multi-round protocols or key updates, both of which

may be undesirable in many scenarios. And in the usual time-bounded adversary model,

unfortunately, such limitations are inherent: an adversary can simply store the ciphertext

and wait for the secret key to leak, at which point it can easily decrypt.

In this chapter we ask: can we force a would-be “save-it-for-later adversary” to actually

store the ciphertext in its entirety, for the entire length of time it is waiting for the secret key

to leak? At aminimum such storagemay be inconvenient, and for very large files or long time

frames, it may be prohibitively costly. Even for short messages, one may artificially increase

the ciphertext size, hopefully forcing the adversary to use much more storage than message

length. We may therefore hope that such an incompressible encryption scheme maintains the

privacy of messages even if the secret key is later revealed.

Remark 5.1.1. For an illustrative example, an individual with a gigabit internet connection

can transmit∼10TB per day, potentially much more than their own storage. Of course many

entities will have 10TB or even vastly more, but an incompressible scheme would force them

to devote 10TB to storing a particular ciphertext for potentially years until the key is revealed.

Acrossmillions or billions of people, even powerful adversaries like state actors would only be able

to devote such storage to a small fraction of victims.

Unfortunately, traditional public key encryption schemes are not incompressible; an ad-

versary may be able to store only a short digest of the ciphertext and still obtain non-trivial

124

information about the plaintext once the secret key is leaked. For example, for efficiency rea-

sons, hybrid encryption is typically used in the public key setting, where the encryption of a

messagemmay look like:

(Enc(pk, s) , G(s)⊕m) .

Here, s is a short seed, and G is a pseudorandom generator used to stretch the random seed

into a pseudorandom pad for the message m. A save-it-for-later adversary need not store

the entire ciphertext; instead, they can store just Enc(pk, s) as well as, say, the first few bits of

G(s)⊕m. Once the secret key is revealed, they can learn s and then recover the first few bits of

m. This may already be enough to compromise the secrecy ofm. Such an attack is especially

problematic if we wanted to artificially increase the ciphertext size by simply padding the

message and appending dummy bits, since then the first few bits of m would contain the

entire secret plaintext.

The compressibility issue is not limited to the scheme above: we could replaceG(s)⊕m

with a different efficient symmetric key encryption scheme such as CBC-mode encryption,

and essentially the same attack would work. The same goes for bit encryption as well.

Incompressible public key encryption instead requires that if the adversary stores any-

thing much smaller than the ciphertext, the adversary learns absolutely nothing about the

message, even if the secret key later leaks.

Remark 5.1.2. Wenote that plain public key encryptiondoes have some incompressibility prop-

erties. In particular, it is impossible, in a plain public key encryption scheme, for the adversary

to significantly compress the ciphertext and later be able to reconstruct the original ciphertext.

However, this guarantee implies nothing about the privacy of the underlyingmessage should the

key leak.

125

Incompressible Signatures. A canonical application of signatures is to prevent man-

in-the-middle attacks: by authenticating each message with a signature, one is assured that

the messages were not tampered with. However, a man-in-the-middle can always delay send-

ing an authenticated message, by storing it for later. The only way to block such attacks in

the usual time-bounded adversary model is to use multi-round protocols, rely on synchro-

nized clocks and timeouts, or have the recipients keep state, all of which may be undesirable.

We therefore also consider the case of incompressible signatures, which force such a delaying

adversary to actually store the entire signature for the duration of the delay.

In slightly more detail, in the case of plain signatures, a forgery is a signature on any new

message, one the adversary did not previously see signed. The reason only new signed mes-

sages are considered forgeries is because an adversary can simply store a valid signature it sees,

and later reproduce it. An incompressible signature, essentially, requires that an adversarywho

produces a valid signature on an existing message must have actually stored a string almost as

large as the signature. By making the signatures long, we may hope to make it prohibitively

costly to maintain such storage. As in the case of encryption, existing signature schemes do

not appear to offer incompressible security; indeed, it is usually desired that signatures are

very short.

Feature: Low-storage for streaminghonest users. Given that communication

will be inconveniently large for the adversary to store, a desirable feature of incompressible

ciphertexts and signatures is that they can be sent and receivedwith low storage requirements

for the honest users. In such a setting, the honest users would never store the entire cipher-

text or signature, but instead generate, send, and process the communication bit-by-bit in a

streaming fashion.

126

Feature: High rate. With incompressible ciphertexts and signatures, communication

is set to be deliberately large. If the messages themselves are also large, it may be costly to fur-

ther blowup the communication in order to achieve incompressibility. Therefore, a desirable

feature is to have the rate—the ratio of the maximummessage length to the communication

size—be as close to 1 as possible. In this way, for very large messages, there is little communi-

cation overhead to make the communication incompressible.

5.1.1 PriorWork

Dziembowski45 constructed information-theoretically secure symmetric-key incompressible

encryption (referred to as forward-secure encryption) via randomness extractors. The focus

of our work is on public-key encryption and signature schemes, which inherently cannot be

information-theoretically secure.*

Also, notice that the notion of incompressible cryptography is very similar to disappear-

ing public key encryption and digital signatures introduced in the previous chapter, except

with an important distinction: disappearing cryptography assumebothhonest andmalicious

parties operate as space-bounded streaming algorithms throughout their operation. Honest

users are assumed to have a somewhat lower storage bound than the adversary’s.

In terms of the functionality requirement for honest users, disappearing cryptography

corresponds to the low-storage streaming variant of incompressible cryptography. However,

in terms of the security requirement, disappearing cryptography is somewhat weaker, since

*The symmetric-key scheme of45 also only offers one-time security. However, a simple hybrid argument
shows that this implies many-time security, where the adversary can compress each of many ciphertexts sepa-
rately and later sees the secret key. However, it inherently does not offer any security if the adversary can jointly
compress many ciphertexts, even if the compressed value is much smaller than a single ciphertext! In contrast,
public-key incompressible encryption automatically ensures security in such setting via a simple hybrid argu-
ment.

127

it restricts the adversary to also be space-bounded throughout its entire operation, and ob-

serve the ciphertexts/signatures produced by the cryptosystem in a streaming manner. On

the other hand, incompressible cryptography allows the adversary to observe each cipher-

text/signature in its entirety and compute on it using an unrestricted amount of local mem-

ory, but then store some small compressed versionof it afterwards. Somedisappearing schemes

may be insecure in the incompressible threat model: for example, one of the disappearing

ciphertext schemes from the previous chapter could potentially even be based on symmetric

key cryptography, despite being a public key primitive.* Yet public key incompressible cipher-

texts easily imply public key encryption, which is believed to be stronger than symmetric key

cryptography70.

In summary, incompressible cryptography with low-storage streaming is also disappear-

ing, but the reverse direction does not hold.

5.1.2 Our Results

We give new positive results for incompressible cryptography:

• Under the minimal assumption of standard-model public key encryption, we con-

struct a simple incompressible public key encryption scheme. The scheme supports

streaming with constant storage, independent of the ciphertext size. As a special case,

we achieve provably secure disappearing ciphertexts with optimal honest-user storage

and under mild assumptions, significantly improving on disappearing cryptography

from the previous chapter. The ciphertext size is |c| = |S|+ |m| × poly(λ), where |S|

is the adversary’s storage, |m| the message size, and λ the security parameter.

*It’s not hard to see that one-way functions, and therefore symmetric key cryptography, are implied by
disappearing ciphertexts, since the secret key can be information-theoretically recovered from the public key.

128

• Under the minimal assumption of one-way functions, we construct incompressible

signatures. Our scheme supports streaming with constant storage, independent of

the signature size. Thus we also achieve provably secure disappearing signatures un-

derminimal assumptions, again significantly improvingondisappearing cryptography

from the previous chapter. The total communication (message length plus signature

size) is |S|+ |m|+ poly(λ).

• Under standard-model indistinguishability obfuscation (iO),we construct “rate 1” in-

compressible public-key encryption, where |c| = |S|+poly(λ) and themessage length

can be as large as roughly |S|. In particular, for very large messages, the ciphertext size

is roughly the same as the message size.

The public keys of our scheme are small, but the secret keys in this scheme are at least as

large as themessage, whichwe explain is potentially inherent amongst provably-secure

high-rate schemes.

Along the way, we give the first rate-1 construction of functional encryption for cir-

cuits, where |c| = |m|+ poly(λ).

• We consider a notion of “rate-1” incompressible signatures, where the total communi-

cation is only |S|+ poly(λ), and the message can be as large as roughly |S|. Note that

the signature by itself must have size at least |S| for incompressibility (sincemmay be

compressible), and so if we separately send the message and signature, the total com-

munication would be at least |S| + |m|, which is not rate 1. Instead, we just send a

signature and require the message to be efficiently extractible from the signature.

We show that rate-1 incompressible signatures are equivalent to incompressible encod-

129

ings, defined by Moran andWichs79. By relying on the positive results of Moran and

Wichs79, we obtain such signatures under either the Decisional Composite Residuos-

ity (DCR) or LearningWith Errors (LWE) assumption, in either the CRS or random

oracle model. The random oracle version supports low-space streaming, as does the

CRS model if we assume the (large) CRS is streamed. On the other hand, by rely-

ing on the negative results of Moran andWichs79, we conclude that a provably secure

rate-1 construction in the standard model is unlikely.

5.1.3 Other RelatedWork

Big-Key Cryptography in the BoundedRetrievalModel. The study of big-key

cryptography in theBoundedRetrievalModel (BRM)has evolved through a series ofworks44,37,31,4,3,14.

The high-level difference is that in the BRM, the secret keys aremade large to prevent exfiltra-

tion, while the communication (e.g., ciphertexts, signatures) are kept small. Incompressible

cryptography is the reverse: we make the communication large to prevent an adversary from

being able to remember it in its entirety, while the secret key is ideally small. On a technical

level, while there are some high-level similarities such as relying on a combination of compu-

tational and information-theoretic techniques, the concrete schemes are quite different.

SymmetricCryptographywithMemory-BoundedAdversaries. Therehasbeen

various studies into the symmetric-key setting where the adversaries are memory-bounded.

For instance, the work by Rivest89 introduces all-or-nothing encryption, a symmetric-key en-

cryption scheme such that only knowing some individual bits of the ciphertext reveals no

information about the message, even if the adversary is later given the secret key. This is sim-

ilar to the forward-secure encryption due to Dziembowski45, except that in forward-secure

130

encryption, the adversary is allowed to compute an arbitrary function (with a small-sized

output) of the ciphertext, instead of only knowing a few individual bits of it. So all-or-

nothing encryption can be thought of as disappearing encryption in the symmetric-key set-

ting, whereas forward-secure encryption is closer to the symmetric-key version of incom-

pressible encryption. The work by Zaverucha98 further extends the idea of all-or-nothing

encryption, constructing a password-based encryption scheme. Building on this, the work

byBiryukov andKhovratovich17 constructsmemory-hard encryption by combining the idea

from Zaverucha98 together with an external memory-hard function, which allows for high

memory bounds even with a small block size. All of these prior works are in the symmetric-

key setting, and it is not obvious how to extend them to the public-key setting as we study in

this chapter.

Rate-1 Incompressible Encryption from StandardAssumptions. In a later fol-

lowup work, Branco, Döttling, and Dujmovic25 constructed rate-1 incompressible encryp-

tion withCCA security from programmable hash proof systems (HPS), plain-model incom-

pressible encodings79 and apseudorandomgenerator (PRG).Theseprimitives canbe realized

from, e.g. the DDH and additionally the DCR or the LWE assumptions,

5.1.4 Technical Overview

Incompressible Encryption. We first consider incompressible public key encryption.

The syntax is identical to that of standard-model encryption, but the security game is differ-

ent:

1. The challenger first gives the adversary the public key.

131

2. The adversary then produces two messagesm0,m1.

3. The challenger encrypts one of the two messages, as the ciphertext c.

4. Now the adversary produces a state s of size somewhat smaller than c.

5. The challenger then reveals the secret key.

6. The adversary, given only the small state s but also the secret key, now makes a guess

for which message was encrypted.

Note that, except for the size of the state s being bounded between Steps 4 and 6, the size of

the adversary’s storage is unbounded. It is also easy to see that this definition implies standard

semantic security of public-key encryption.

Remark 5.1.3. Note that this security definition is quite similar to that of disappearing pub-

lic key encryption from the previous chapter with two distinctions. Firstly, in the disappearing

encryption security experiment, there is no Step 4 as above. Instead, the adversary is bounded by

some space throughout the entire experiment. Additionally, functionality wise, disappearing

encryption requires the protocol to be executable by honest parties with some space bound lower

than the adversary’s storage. In our setting, we do not consider this to be an inherent require-

ment, but rather a desirable feature that some of our schemes satisfy. As we will see in Remark

5.1.4, this feature is incompatible with rate-1 schemes, and hence we will drop it in that setting.

Our Solution. We give a construction of incompressible encryption in Section 5.3, un-

der the minimal assumption of generic public key encryption.

We describe our solution using functional encryption (FE), which is a form of public

key encryption where the secret key holder can give out function secret keys for functions

132

f; a function secret key allows for learning f(m) but nothing else about the message. For

our application, we only need a very special case of single-key functional encryption, which

we instantiate with a simple and potentially practical construction from generic public key

encryption scheme. Our incompressible encryption scheme works as follows:

• The public key is just the public key for the underlying FE scheme. The secret key is a

function secret key for the function fv defined as

fv(s, b) =

s if b = 0

s⊕ v if b = 1

where the value v is chosen uniformly at random and hard-coded into fv. Here, s, v are

reasonably short strings, whose length will be discussed shortly.

• To encrypt m, choose a random s, and compute c ← FE.Enc(FE.mpk, (s, 0)) as an

encryption of (s, 0) under the FE scheme. Then choose a large random string R. In-

terpret s as the pair (s′, t), where t is a string of length equal to the message length, and

s′ is the seed for a strong extractor. Then compute z = Extract(R; s′) ⊕ t ⊕ m. The

final ciphertext is (c,R, z).

• To decrypt, use the FE secret key to recover s = (s′, t) from c. Then recover m =

z⊕ Extract(R; s′)⊕ t.

We can generate and transmit the stringR in a streaming fashion. We can then use an online

extractor93 so that Extract(R; s′) can be computed without having to storeR in its entirety.

Note that R is the only “big” component of the ciphertext, so encryption and decryption

therefore require small space.

133

We prove security through a hybrid argument. First, we use FE security to switch to c

being generated as c← FE.Enc(FE.mpk, (s⊕v, 1)). Since this c decrypts equivalently under

the secret key, this change is indistinguishable.

We then observe that the string u = s ⊕ v being encrypted under the FE scheme, as

well as the string z included in the final ciphertext, are both just uniformly random strings.

We can therefore delay the generation of the secret key and v until the very end of the exper-

iment. Now we think of the adversary’s state (as well as some other small values needed to

complete the simulation) as a leakage on the large random stringR. Since the adversary’s stor-

age is required to be small compared to R, R has min-entropy conditioned on this leakage.

This means we can invoke the randomness guarantee of the randomness extractor to replace

Extract(R; s′) with a uniform random string. At this point, m is one-time-padded with a

uniform string, and therefore information-theoretically hidden.

We explain how to instantiate the functional encryption scheme. Since the adversary only

ever sees a single secret key,we canbuild such a functional encryption schemegenerically from

public key encryption, using garbled circuit techniques57. On the other hand, our functional

encryption scheme only needs to support an extremely simple linear function. We show a

very simple and potentially practical solution from any public key encryption scheme.

Remark 5.1.4. We note that our scheme has a less-than-ideal rate, since the ciphertext size is

at least as large as the adversary’s storage plus the length of the message. Low rates, however,

are inherent to schemes supporting low-storage streaming. Indeed, the storage requirements of

the honest users must be at least as large as the message, and in the high-rate case this means the

honest users must be capable of storing the entire ciphertext. This remains true even if the mes-

sage itself is streamed bit-by-bit, which can be seen as follows: by incompressibility, the decrypter

134

cannot start outputtingmessage bits until essentially the entire stream has been sent. Otherwise,

an attacker can store a short prefix of the ciphertext, and then when it gets the secret key mimic

the decrypter until it outputs the first message bit. Now, at the point right before the decrypter

outputs the firstmessage bit, the entire contents of themessagemust be information-theoretically

contained within the remaining communication (which is short) and the decrypter’s state, since

the decrypter ultimately outputs the whole message. Thus the decrypter’s state must be almost as

large as the message.

A rate-1 solution. We now discuss how we achieve a rate-1 scheme, using indistin-

guishability obfuscation. This is ourmost complicated construction, andwe only give a brief

overview here with the full construction in Section 5.4.

The central difficulty in achieving a rate-1 scheme is thatwe cannot guarantee a ciphertext

with large information-theoretic entropy. Indeed, the ciphertext must be almost as small as

the message, so there is little room for added entropy on top of the message. But the message

itself, while large, many not have much entropy. Therefore, our approach of using random-

ness extraction to extract a random string from the ciphertext will not work naively.

Our solution, very roughly, is to have the large random value in the secret key. Using a

delicate argument, we switch to a hybrid where the ciphertext is just an encryption of large

randomness R, and the secret key contains the message, masked by a string extracted from

R. Now we can mimic the low-rate case, arguing that given the small state produced by the

adversary,R still has min-entropy. Thus, the messagem is information-theoretically hidden.

The result is that we achieve an incompressible encryption scheme whose rate matches

the rate of the underlying functional encryption scheme. Unlike the low-rate case, our FE

scheme appears to need the full power of FE for circuits, since it will be evaluating crypto-

135

graphic primitives such as PRGs and extractors. Unfortunately, all existing FE schemes for

general circuits, even using iO, have poor rate. For example, if we look at the original iO

scheme of Garg et al.47, the ciphertext contains two plain public key encryption encryptions

of the message, plus a NIZK proof of consistency. The result is that the rate is certainly at

most 1/3. Another construction due to Boyle et al.22 sets the ciphertext to be an obfuscated

program containing themessage; since knownobfuscation schemes incur a large blowup, the

scheme is not rate-1.

We give a novel rate-1 FE scheme (with many key security), by building on ideas from

BonehandZhandry21. Theybuild anobject calledprivate linear broadcast encryption (PLBE),

which can be seen as a special case of FE for simple comparison functionalities. However,

their approach readily generalizes to more complex functionalities. The problem with their

construction is that their proof incurs a security loss proportional to the domain size. In their

case, the domain is polynomial and this is not a problem. But in our case, the domain is the

message space, which is exponential. One may hope to use complexity leveraging, but this

would require setting the security parameter to be at least as large as the message. However,

this will not give a rate-1 scheme since the ciphertext is larger than the message by an additive

factor linear in the security parameter.

We therefore devise new techniques for proving security with just a polynomial loss, even

for largemessages, thus giving the first rate-1 FE scheme for general circuits, from iO andone-

way functions. Details in Section 5.7.

Remark 5.1.5. Wenote that the final construction of rate-1 incompressible encryption has very

short public keys, but large secret keys. We therefore leave as an interesting open questiondevising

a scheme that also has short secret keys. However, achieving such a scheme with provable security

136

under standard assumptions appears hard. Indeed, cryptographic assumptions typically make

no restrictions on the adversary’s storage. The issue is that the message itself may have little en-

tropy, and so to prove that a ciphertext is incompressible it seems the computational assumptions

will be used to transition to a hybrid where the ciphertext has nearly full entropy (indeed, this

is how our proof works). But this transition happens without space bounds, meaning the reduc-

tion actually is capable of decrypting the ciphertext and recovering the message once the key is

revealed. Yet in this hybrid the ciphertext was “used up” in order to make it high-entropy, and

it seems the only place left to embed the message is the secret key (again, this is how our proof

works). If the message is large, it therefore seems the secret key must be large as well. We believe

this intuition can be formalized as a black-box separation result, similarly to analogous results

of96, but we leave this for future work.

IncompressibleSignatures. An incompressible signature scheme is definedby the fol-

lowing experiment:

1. The challenger first gives the adversary the public key.

2. The adversary makes repeated signing queries on arbitrary messages. In response, the

challenger produces a signature on the message.

3. After observing many signatures, the adversary must produce a small state s of size

somewhat smaller than a single signature.

4. Next, the adversary, is given the small state s, and wins if it produces a valid signature

on anymessage, potentially even one used in a prior signing query.

137

Note that, except for the size of the state s being bounded between Steps 3 and 4, the size of

the adversary’s storage is unbounded.

Remark 5.1.6. This definition is also quite similar to that of disappearing signature from the

previous chapter except for two differences. For disappearing signatures, the security experiment

does not have Step 3 as above, and instead requires the adversary to be bounded by some space

throughout the entire experiment. Functionality wise, disappearing signature requires the

scheme can be run by honest parties with a space bound somewhat lower that the adversary’s

storage, whereas we don’t require that for incompressible signatures.

Our Solution. We give a very simple construction of incompressible signatures in Sec-

tion 5.5. To sign m, first choose a large uniformly random string R, and then compute

σ ← Sign(sk, (R,m)), where Sign is a standard-model signature scheme. The overall

signature is then (R, σ). Verification is straightforward.

Both signing and verification can be evaluated in a low-space streaming fashion, provided

Sign can be evaluated as such. One can always assume this property of Sign: first hash the

message using a streaming-friendly hash function such asMerkle-Damgård, and then sign the

hash. Since the hash is small and computing the hash requires low-space, the overall signing

algorithm is low space.

For security, consider an adversary which produces a small state s somewhat smaller than

the length of R. Since R is random, it will be infeasible for the adversary to re-produce R

in Step 4. Therefore, any valid signature must have an R different than any of the messages

previously signed. But this then violates the standard unforgeability of Sign.

138

Arate-1 solution. In Section 5.6, wemodify the above construction to get a rate-1 solu-

tion. We note that “rate” here has to be defined carefully. In the above solution, the signature

size is independent of themessage size, and so it seems that the signature has good rate. How-

ever, communication will involve both the signature and themessage, and so the total length

of the communication will be significantly larger than the message. We therefore want that

the total communication length is only slightly longer than the message being signed.

On the other hand, if the message is very long, one may naturally wonder whether we

can just sign the message using any standard-model signature scheme, and have the resulting

communication be rate-1. However, a long message may in fact be compressible. What we

want is to achieve rate-1 total communication, and incompressibility, even if themessagemay

be compressed.

We thereforedefine a rate-1 incompressible signature as an incompressible signaturewhere

the signature is only slightly longer than the message, and where there is a procedure to ex-

tract the message from the signature. In this way, all that needs to be sent is the signature

itself, and therefore the total communication remains roughly the same as the message.

Equivalenceto incompressibleencodings. Wenextdemonstrate that incompress-

ible signatures are equivalent to incompressible encodings79. These arepublic encoding schemes

where the encoding encodes a message into a codeword c that is only slightly longer than the

message. From c, the original message can be recovered using a decoding procedure. For se-

curity, the adversary then receives the codeword as well as the message, tries to compress the

codeword into a small storage s. Then the adversary, given s and the message, tries to recover

the exact codeword c.

A rate-1 incompressible signature (with small public keys) gives an incompressible encod-

139

ing: to encode a message, simply generate a new public/secret key pair, and sign the message.

The codeword c is then the public key together with the signature. Decoding and security

follow readily from the message extraction procedure and security of the incompressible sig-

nature.

In theother direction, to sign amessage, first incompressibly encode themessage and then

sign the result using a standard-model signature scheme. The final signature is the codeword

together with the standard-model signature. Extraction follows from the decoding proce-

dure. If the incompressible encoding supports low-space streaming, so does the signature

scheme. For security, since the adversary cannot produce the original codeword that was

signed due to the security of the incompressible encoding, they must produce some other

codeword. But a valid signature would also contain a standard-model signature on this new

codeword, violating the security of the signature scheme.

Moran and Wichs79 instantiate incompressible encodings under either the Decisional

Composite Residuosity (DCR) or Learning With Errors (LWE) assumptions, in either the

CRS or randomoraclemodels. We observe that their incompressible encodings simply break

themessage into blocks of length poly(λ) and encode each block separately; as such they can

be easily streamed in low space, though the CRS-based scheme would need the CRS to be

streamed as well. We obtain the incompressible signatures under the same assumptions in

the same models, with low-space streaming.

We also note thatwe canhave the signer generate theCRS and include it in the public key,

giving a standard-model incompressible encoding scheme with large public keys. Note that

such a scheme is not immediately equivalent to incompressible encodings, since the codeword

contains the public key, and would therefore be too large.

140

On the other hand,79 show that aCRSor randomoracle is somewhat necessary, by giving

a black box separation relative to falsifiable assumptions in the standard model. Due to our

equivalence, this implies such a black box impossibility for incompressible signatures in the

standard model as well.

5.1.5 Acknowledgements

We would like to thank Ji Luo, Chenzhi Zhu, and the audience members of the CMU Cy-

Lab Crypto Seminar for pointing out an issue regarding Definition 5.5.1 for incompressible

signatures and helpful discussions on that matter.

5.2 Chapter Preliminaries

Digital Signatures. We generalize the syntax of a signature scheme, which will ulti-

mately be necessary to achieve a meaningful high “rate”. Instead of producing a signature

that is sent along side the message, we would implicitly embed or encode the message into the

signature. The signature is then all that is sent to the receiver, fromwhich themessage can be

decoded and verified. Any standard signature scheme can readily be viewed in our generalized

syntax by just calling (m, σ) the “signature.”

A public key signature scheme for message space {0, 1}Lm and signature space {0, 1}Lσ is

a tuple of PPT algorithmsΠ = (Gen, Sign,Ver) such that:

• Gen(1λ)→ (vk, sk) samples a verification key vk, and a signing key sk.

• Sign(sk,m) → σ takes as input the signing key sk and a messagem, and computes a

signature σ that implicitly contains the message m.

141

• Ver(vk, σ)→ m/⊥ takes as input the verification key vk and a signature σ, and out-

puts either the messagem or⊥. Outputtingmmeans that the signature verifies, and

outputting⊥means that the signature is invalid.

Definition 5.2.1 (Correctness). For all λ ∈ N and message m ∈ {0, 1}Lm , let (vk, sk) ←

Gen(1λ), then we have Pr[Ver(vk, Sign(sk,m)) = m] ≥ 1− negl(λ).

We modify the security experiment slightly by asking the adversary to output a signa-

ture σ instead of a message-signature pair, and the adversary wins the game if and only if

Ver(vk, σ) /∈ {⊥,m1, . . . ,mq} wheremi’s are the previously queried messages. The “rate”

of the signature scheme is defined to be Lm/Lσ.

5.3 Incompressible Encryption: Our Basic Construction

Here we show how to construct an incompressible public key encryption scheme with low

“rate”, i.e. the ratio of the message size to the ciphertext size. First, we define what it means

for a public key encryption scheme to be incompressible.

5.3.1 Definition

We give the definition of incompressible encryption, which is based on the similar definition

of disappearing encryption63. For security parameters λ and S, an incompressible public key

encryption scheme with message space {0, 1}Lm and ciphertext space {0, 1}Lct is a tuple of

PPT algorithmsΠ = (Gen,Enc,Dec).

Remark 5.3.1. For the original disappearing PKE defined in63, it is additionally required

thatGen, Enc, andDec can be run in space N≪ Lct. Here, we will consider schemes that have

both large and small space.

142

The rest of the syntax of an incompressible PKE scheme is identical to that of a classical

PKE scheme. The “rate” of the PKE scheme is simply Lm/Lct.

For the security definition, consider the following indistinguishability experiment for an

adversaryA = (A1,A2):

Incompressible Encryption Security Experiment DistIncomEnc
A,Π (λ):

1. The adversaryA1, on input 1λ, outputs a space bound 1S.

2. Run Gen(1λ, 1S) to obtain keys (pk, sk).

3. Sample a uniform bit b ∈ {0, 1}.

4. The adversary is then provided the public key pk and submits an auxiliary input aux.

5. The adversary replies with the challenge query consisting of twomessagesm0 andm1,

receives ct← Enc(pk,mb).

6. A1 produces a state st of size at most S.

7. The adversaryA2 is given the tuple (pk, sk, aux, st) andoutputs a guess b′ for b. If b′ =

b, we say that the adversary succeeds and the output of the experiment is 1. Otherwise,

the experiment outputs 0.

Definition 5.3.1 (Incompressible Encryption Security). For security parameters λ and S, a

public key encryption scheme Π = (Gen,Enc,Dec) has incompressible encryption security if

for all PPT adversariesA = (A1,A2):

Pr
[
DistIncomEnc

A,Π (λ) = 1
]
≤ 1

2
+ negl(λ).

143

Notice that allowing the adversary to submit and later receive the auxiliary input aux is

equivalent to allowingA1,A2 to just have shared randomness at the beginning of the exper-

iment and that, in the non-uniform setting, the definition would be the same without aux

sinceA1,A2 are deterministic w.l.o.g.

Remark 5.3.2. The original Disappearing Ciphertext Security63 has a very similar security

notion, except that the adversary has a space bound of S throughout the entire experiment, and

that the ciphertext is a long stream sent bit by bit. Notice that our definition of Incompress-

ible Encryption Security is a strictly stronger security definition than Disappearing Ciphertext

Security.

5.3.2 Construction

Construction 5.3.1. Given FE = (Setup,KeyGen, Enc,Dec) a single-key selectively secure

functional encryption scheme with a rate of ρFE and a strong average min-entropy extractor

Extract : {0, 1}n × {0, 1}d → {0, 1}Lm , with d = poly(λ) and n = S + poly(λ) the

constructionΠ = (Gen,Enc,Dec) works as follows:

• Gen(1λ, 1S): First, obtain (FE.mpk,FE.msk) ← FE.Setup(1λ). Then, generate the

secret key for the following function fv with a hardcoded v ∈ {0, 1}d+Lm :

fv(s′ = (s, t), flag) =

s′ if flag = 0

s′ ⊕ v if flag = 1
.

Output pk = FE.mpk and sk = FE.skfv ← FE.KeyGen(FE.msk, fv).

• Enc(pk,m): Sample a random tuple s′ = (s, t) where s ∈ {0, 1}d is used as a seed

144

for the extractor and t ∈ {0, 1}Lm is used as a one-time pad. The ciphertext consists of

three parts: FE.ct ← FE.Enc(FE.mpk, (s′, 0)), a long randomness R ∈ {0, 1}n, and

z = Extract(R; s)⊕ t⊕m.

• Dec(sk, ct = (FE.ct,R, z)): First, obtain s′ ← FE.Dec(FE.skfv ,FE.ct), and then use

the seed s to compute Extract(R; s)⊕ z⊕ t to recover m.

Note that if Extract is an online extractor93, then encryption and decryption can be run

in a low-space streaming fashion, by first sending FE.ct, then streamingR, and then sending

z. The rate of this construction is

Lm

Lct
= Lm

(
d+ Lm + 1

ρFE
+ n+ Lm

)−1
=

1
(1/ρFE + 1) + S/Lm

− o(1).

Theorem 5.3.1. Assuming the existence of a functional encryption schemewith single-key selec-

tive security and a rate of 1/poly(λ), and a (poly(λ), negl(λ)) averagemin-entropy extractor,

there exists an incompressiblePKEwith ciphertext size S+Lm+poly(λ)+poly(λ)Lm, public key

size poly(λ) and secret key size poly(λ). It supports streaming decryption using Lm + poly(λ)

bits of memory.

5.3.3 Proof of Security

We organize our proof of security into a sequence of hybrids.

Sequence of Hybrids

• H0: The original incompressible encryption security experiment DistIncomEnc
A,Π , where

the bit b in the experiment is fixed to be 0.

145

• H1: In step 5, instead of computing FE.ct ← FE.Enc(FE.mpk, (s′, 0)), compute

FE.ct← FE.Enc(FE.mpk, (s′ ⊕ v, 1)).

• H2: In step 2, only sample (FE.mpk,FE.msk) ← FE.Setup(1λ). In step 5, after re-

ceiving the challenge query, sample uniformly random z ∈ {0, 1}Lm , u ∈ {0, 1}d+Lm ,

R ∈ {0, 1}n and send back FE.ct← FE.Enc(FE.mpk, (u, 1)),R, and z as the cipher-

text. In step7, sample auniformly random s ∈ {0, 1}d, and compute t = Extract(R; s)⊕

z⊕m0, and v = s′⊕uwhere s′ is the tuple (s, t). Use this v to compute sk = FE.skfv ←

FE.KeyGen(FE.msk, fv).

• H3: In step 7, sample a uniformly random r ∈ {0, 1}Lm and compute t = r⊕ z⊕m0

instead.

• H4: Swap the bit b in the security experiment to be 1 instead of 0.

• H5: Switch back to the case where t = Extract(R; s)⊕ z⊕m1.

• H6: Switch back to the case where we produce sk in step 2 instead of step 5.

• H7: Switch the FE ciphertext back to the real one FE.Enc(FE.mpk, (s′, 0)). Notice

here we’re at the original incompressible encryption security experiment, where the

bit b is fixed to be 1.

Proof of Hybrid Arguments

Lemma 5.3.1. If the functional encryption scheme FE has single-key selective security, then

no PPT adversary can distinguish between H0 and H1 (respectively H6 and H7) with non-

negligible probability.

146

Proof. Here we will prove the case for H0 and H1. The case for H6 and H7 follows analo-

gously. This is by a simple reduction to the single-key selective security of the functional

encryption scheme. If an adversary A is able to distinguish between H0 and H1, we show

how to construct an adversaryA′ that breaks security of the functional encryption scheme

FE. The only difference between H0 and H1 is that in H0 the adversary receives an encryp-

tion of (s′, 0), while inH1 the adversary receives an encryption of (s′ ⊕ v, 1). But notice that

fv(s′, 0) = s′ = fv(s′ ⊕ v, 1), so the adversary A is able to distinguish between two FE ci-

phertexts that have the same functional output on function fv, for which it has a secret key.

This directly breaks the underlying functional encryption security. Concretely,A′ works as

follows by usingA = (A1,A2) as a subroutine:

• On input 1λ, sample uniform values s′ and v, and submit the challenge queryFE.m0 =

(s′, 0) and FE.m1 = (s′ ⊕ v, 1) to the challenger. Receive FE.mpk and FE.ct in re-

sponse.

• Send 1λ toA1 and receive 1S.

• Send FE.mpk to A1, receive aux and the challenge query m0 and m1, and respond

with FE.ct, R and z, where R is a random string of length S + poly(λ), and z =

Extract(R; s) ⊕ t ⊕ m0. The adversaryA1 produces a state st. Notice that the only

component that’s different for H0 and H1 is FE.ct, and it does not depend on the

challenge query fromA1. R and z remain unchanged.

• Send fv to the challenger and receive FE.skfv . Forward sk = FE.skfv to A2 together

with (FE.mpk, aux, st).

• IfA2 outputs that it is inH0, output 0. Otherwise, output 1.

147

It is straightforward to verify that ifAwins the game,A′ wins as well.

Lemma 5.3.2. Noadversary can distinguish betweenH1 andH2 (respectivelyH5 andH6) with

non-negligible probability.

Proof. We prove the case for H1 and H2, the case for H5 and H6 follows analogously. Since

pk does not depend on sk, and sk is not used until in step 7, now instead of fixing fv (and

thus sk = FE.skfv) in step 2, we sample it lazily in step 7. Our new sampling procedure inH2

makes the following two changes toH1: First, inH1, we sample a uniform t and compute z =

Extract(R; s)⊕t⊕m0, while inH2, we sample a uniform z and compute t = Extract(R; s)⊕

z ⊕ m0. This is just a change of variables, and gives two identical distributions. Second, in

H1 we sample a uniform v and encrypt u = v ⊕ s′, while in H2 we encrypt a uniform u

and compute v = u ⊕ s′. Again, these are identical distributions. Thus, no adversary can

distinguish betweenH1 andH2 with non-negligible probability.

Lemma 5.3.3. If the extractorExtract is a (poly(λ), negl(λ)) averagemin-entropy extractor,

then no adversary that produces a state st of size at most S can distinguish between H2 and H3

(resp. H4 and H5) with non-negligible probability.

Proof. We prove the case forH2 andH3. The other case follows naturally.

Here let the random variables X = R, and Y = (FE.mpk,FE.msk, aux, u, z) and Z =

st. By Lemma 2.1.1, we have

H∞(X|Y,Z) ≥ min
y

H∞(X|Y = y,Z) ≥ min
y

H∞(X|Y = y)− S = poly(λ).

The last equality above follows sinceX = R is a uniformly random string, independent of Y,

of lengthS+poly(λ). By extractor security, no adversary candistinguish (s,Extract(R; s),Y,Z)

148

from (s,ULm ,Y,Z) except with negl(λ) probability. Since we now sample u← ULm , no ad-

versary can now distinguish between t = Extract(R; s) ⊕ z ⊕m0 and t = u ⊕ z ⊕m0, i.e.

H2 andH3.

Lemma 5.3.4. No adversary can distinguish H3 from H4 with non-zero probability.

Proof. Notice that the only difference betweenH3 andH4 is that inH3wehave t = r⊕z⊕m0

while inH4wehave t = r⊕z⊕m1, where r is uniformly random. Thus t is uniformly random

in both cases, andH3 andH4 are identical.

Theorem 5.3.2. If FE is a functional encryption scheme with single-key selective security, and

Extract is a (poly(λ), negl(λ)) average min-entropy extractor, then Construction 5.3.1 has

incompressible encryption security.

Proof. The lemmas above show a sequence of hybridswhere no PPT adversary that produces

a state with size at most S can distinguish one from the next with non-negligible probabil-

ity. The first hybrid H0 corresponds to the incompressible encryption security game where

b = 0, and the last oneH7 corresponds to the case where b = 1. The security of the indistin-

guishability game follows.

5.3.4 Instantiating our FE

We now give a simple construction of functional encryption for our needed functionality.

Recall that our functions fv have the form fv(s, flag) = s⊕ (flag · v).

Construction 5.3.2. Let (Gen′,Enc′,Dec′) be a public key encryption scheme. Our scheme

FE = (Setup,KeyGen,Enc,Dec) for message length n+ 1 is defined as:

149

• Setup(1λ): For i ∈ {1, . . . , n}, b ∈ {0, 1}, run (pki,b, ski,b) ← Gen′(1λ). Output

(mpk = (pki,b)i,b , msk = (ski,b)i,b).

• KeyGen(msk, fv) = (ski,vi)i.

• Enc(mpk, (s, flag)): For i ∈ {1, . . . , n}, b ∈ {0, 1}, compute ci,b = Enc′(pki,b, si ⊕

(flag · b)). Output c = (ci,b)i,b.

• Dec(skfv , c): Output x = x1x2 · · · xn where xi = Dec′(ski,vi , ci,vi)

For correctness, note that xi = si⊕(flag·vi), and therefore x = s⊕(flag·v) = fv(s, flag).

Note that the rate of this scheme is 1/poly(λ). Thus the overall rate of our incompressible

encryption scheme is 1/poly(λ).

Theorem 5.3.3. If (Gen′,Enc′,Dec′) is a CPA secure public key encryption scheme, then Con-

struction 5.3.2 is single key semi-adaptively secure for the functions fv.

Proof. Consider a single key semi-adaptive adversary for Construction 5.3.2. Let m0 =

(s0, flag0),m1 = (s1, flag1) be the challenge messages. For a fixed flag bit, fv is injective.

Therefore, if m0 ̸= m1, it must be that flag0 ̸= flag1. Then if the adversary’s secret key

query is on fv, we must have v = s0 ⊕ s1. Thus the two possibilities for the challenge ci-

phertext are the same for ci,vi , but encrypt opposite bits in ci,1−vi . Since the adversary never

gets to see the secret keys ski,1−vi , a simple hybrid argument shows that flipping these bits is

indistinguishable.

Corollary 5.3.1. Assuming the existence of a CPA secure public key encryption scheme and

a (poly(λ), negl(λ)) average min-entropy extractor, there exists an incompressible PKE with

ciphertext size S + Lm + poly(λ) + poly(λ)Lm, public key size poly(λ) and secret key size

poly(λ). Furthermore, it supports streaming decryption using Lm + poly(λ) bits of memory.

150

5.4 Rate-1 Incompressible Encryption

Here, we construct incompressible encryption with an optimal rate of 1− o(1), i.e. the mes-

sage length is (almost) the same as the ciphertext length.

5.4.1 Construction

Forour construction,we require a functional encryption schemewith single-key semi-adaptive

security and a rate of 1, a strong average min-entropy extractor, and a secure pseudorandom

generator (PRG). Our construction works as follows.

Construction 5.4.1. Given FE = (Setup,KeyGen, Enc,Dec) a rate-1 functional encryp-

tion scheme satisfying single-key semi-adaptive security, Extract : {0, 1}Lm × {0, 1}d →

{0, 1}n a strong average min-entropy extractor where d, n = poly(λ), and PRG : {0, 1}n →

{0, 1}Lm a secure PRG, the constructionΠ = (Gen,Enc,Dec) works as follows:

• Gen(1λ, 1S): First, obtain (FE.mpk,FE.msk) ← FE.Setup(1λ). Then, generate the

secret key for the following function fv,s with a hardcoded large randompad v ∈ {0, 1}Lm

and a small extractor seed s ∈ {0, 1}d:

fv,s(x, flag) =

x if flag = 0

PRG(Extract(x; s))⊕ v if flag = 1
.

Output pk = FE.mpk and sk = FE.skfv,s ← FE.KeyGen(FE.msk, fv,s). Set Lm =

S+ poly(λ).

151

• Enc(pk,m): The ciphertext is simply an encryption of (m, 0) using the underlying FE

scheme, i.e. FE.ct← FE.Enc(FE.mpk, (m, 0)).

• Dec(sk, ct): Decryption corresponds to FE decryption. The output is FE.Dec(FE.skfv,s ,

ct) = fv,s(m, 0) = m as desired.

Let ρFE be the rate of FE. Then the ciphertext size is (Lm + 1)/ρFE and the rate of our

incompressible encryption scheme is ρΠ = ρFE/(1 + L−1m). If ρFE = 1 − o(1), then ρΠ =

1− o(1) as well.

Theorem5.4.1. Assuming the existence of a functional encryption schemewith single-key semi-

adaptive security and a rate of 1− o(1), and a (poly(λ), negl(λ)) averagemin-entropy extrac-

tor, there exists an incompressible PKE with message size of up to S − poly(λ), ciphertext size

S+ poly(λ), public key size poly(λ) and secret key size poly(S, λ).

5.4.2 Proof of Security

We organize our proof of security into a sequence of hybrids.

Sequence of Hybrids

• H0: The original incompressible encryption security experiment DistIncomEnc
A,Π , where

the bit b in the experiment is fixed to be 0.

• H1: Instead of fixing v and s in step 2 of the security experiment, lazily sample v and s

in step 7 where we need to provide sk. Also, instead of sampling v directly, first sample

a uniformly random u ∈ {0, 1}Lm , and then compute v = u⊕m0.

152

• H2: We further modify how we sample v. Now instead of sampling a random u, we

sample a random PRG key k ∈ {0, 1}n, and set v = PRG(k)⊕m0.

• H3: We once more modify how we sample v. We now sample a long randomnessR ∈

{0, 1}Lm and use that to compute v = PRG(Extract(R; s))⊕m0.

• H4: In step 5, set the ciphertext to be FE.ct← FE.Enc(FE.mpk, (R, 1)).

• H5: In step 7, revert to computing v = PRG(k)⊕m0 for a uniform k.

• H6: In step 7, revert to computing v = u⊕m0 for a uniform u.

• H7: Switch the bit b of the experiment from 0 to 1.

• H8: In step 7, sample v as PRG(k)⊕m1.

• H9: In step 7, sample v as PRG(Extract(R; s))⊕m1.

• H10: In step 5, change the ciphertext back to FE.ct← FE.Enc(FE.mpk, (m1, 0)).

• H11: In step 7, sample v as PRG(k)⊕m1.

• H12: In step 7, sample v as u⊕m1.

• H13: Sample a uniform vback at the beginning of the experiment in step 2. Notice that

now we’re back at the original incompressible encryption security experiment, where

the bit b is fixed to be 1.

153

Proof of Hybrid Arguments

Lemma 5.4.1. No adversary can distinguish between H0 and H1 (respectively H12 and H13)

with non-negligible probability.

Proof. Weprove the case forH0 andH1. The case forH12 andH13 follows analogously. Notice

that pk does not depend on sk, and sk is the only value that depends on v and s, but it is not

used until in step 7. So we can sample v and s lazily in step 7 instead of fixing it as early as in

step 2.

Sampling a uniformly random u andXORing it withm0 is equivalent to using u as a one-

time pad. By the statistical security of OTP,H0 andH1 are also statistically indistinguishable.

Lemma 5.4.2. If the underlying PRG is a secure pseudorandom generator, then no PPT ad-

versary can distinguish between H1 and H2 (as well as H5 and H6, H7 and H8, H11 and H12)

with non-negligible probability.

Proof. Here we prove the case forH1 andH2. The other three cases follow naturally. InH1,

we have v = u⊕m0 with uniformly random u, and inH2, we have v = PRG(k)⊕m0 with

a uniformly random PRG key k. Since the key k is random and not used anywhere else, by

PRG security, the PRGoutput should be computationally indistinguishable from a uniform

distribution. This directly completes the proof.

Lemma 5.4.3. If the underlying Extract is a (Lm, negl(λ)) average min-entropy extractor,

then no adversary can distinguish between H2 and H3 (respectively H10 and H11) with non-

negligible probability.

154

Proof. We prove the case forH2 andH3. The other case follows.

The randomness R is freshly sampled and not used anywhere else, and hence have full

Lm average min-entropy conditioned on the other variables. Therefore, we can easily invoke

the extractor security and that gives us Extract(R; s) is statistically close to a uniform k, and

hence alsoH2 andH3.

Lemma 5.4.4. If the underlying FE is a functional encryption scheme with single-key semi-

adaptive game-based security, then no PPT adversary can distinguish between H3 and H4 (re-

spectively H9 and H10) with non-negligible probability.

Proof. We will prove the case for H3 and H4. The other one follows analogously. Notice

that the only difference betweenH3 andH4 is themessage being encrypted by the underlying

FE scheme. InH3, we use the FE scheme to encrypt (m, 0), while inH4, we encrypt (R, 1).

Notice that

fv,s(R, 1) = PRG(Extract(R; s))⊕ PRG(Extract(R; s))⊕m = m = fv,s(m, 0).

So we have two ciphertexts with the same functionality under the function fv,s. By the

single-key semi-adaptive security of theFE scheme, they should be computationally indistin-

guishable.

More concretely, assume that there exists an adversaryA = (A1,A2) that distinguishes

betweenH3 andH4, we show how to construct an adversaryA′ that wins the semi-adaptive

security game of the FE scheme. By usingA as a subroutine,A′ works as follows:

• Receive 1λ and FE.mpk from the challenger, send 1λ to A1, receive 1S and set Lm =

S+ poly(λ).

155

• Send FE.mpk toA1 and receive aux and the challenge querym0 andm1.

• Sample a uniformly randomR ∈ {0, 1}Lm , and submit the challenge query FE.m0 =

(m0, 0) and FE.m1 = (R, 1) to the challenger. Receive FE.ct in response and forward

it toA1. A1 produces a state st.

• Sample random seed s ∈ {0, 1}d, compute v = PRG(Extract(R; s))⊕m0, and send

fv,s to the challenger. Receive in response FE.skfv,s , and forward it toA2 together with

(FE.mpk, aux, st).

• IfA2 outputs that it is inH3, output 0. Otherwise, output 1.

It should be easy to verify that ifAwins,A′ also wins.

Lemma 5.4.5. If the underlying Extract is a (poly(λ), negl(λ)) average min-entropy extrac-

tor, then no adversary that uses a state of size at most S can distinguish between H4 and H5

(respectively H8 and H9) with non-negligible probability.

Proof. Here we prove the case forH4 andH5. The other case follows analogously.

Here let the random variablesX = R, and Y = (FE.mpk,FE.msk, aux) andZ = st. By

Lemma 2.1.1, we have

H∞(X|Y,Z) ≥ min
y

H∞(X|Y = y,Z) ≥ min
y

H∞(X|Y = y)− S = poly(λ).

The last equation follows from thatX = R is a uniformly random string of length Lm =

S+poly(λ). Therefore, by extractor security, no adversary candistinguish (s,Extract(R; s),Y,Z)

156

from (s,Un,Y,Z) exceptwithnegl(λ)probability. And sincewenow sample k← Un, no ad-

versary can now distinguish between v = PRG(Extract(R; s))⊕m0 and v = PRG(k)⊕m0,

i.e. H4 andH5.

Lemma 5.4.6. No adversary can distinguish between H6 and H7 with non-negligible proba-

bility.

Proof. The only difference betweenH6 andH7 is that inH6 we have v = u⊕m0 and inH7

we have v = u ⊕ m1, where u is uniformly random. This is just a one time pad encryption

with a uniformly sampled key. ByOTP security,H6 andH7 are statistically indistinguishable.

Theorem 5.4.2. If FE has single-key semi-adaptive security, Extract is a (poly(λ), negl(λ))

average min-entropy extractor, and PRG is a secure PRG, then Construction 5.4.1 has incom-

pressible encryption security.

Proof. The lemmas above show a sequence of a polynomial number of hybrid experiments

where noPPTadversary that produces a statewith size atmost S can distinguish one from the

next with non-negligible probability. The first hybridH0 corresponds to the incompressible

encryption security game where b = 0, and the last one H13 corresponds to the case where

b = 1. The security of the indistinguishability game follows.

5.5 Incompressible Signatures: Our Basic Construction

5.5.1 Definition

Herewe give the definition of incompressible signatures. An incompressible signature scheme

Π = (Gen, Sign,Ver) takes an additional space parameter S, and in addition to the standard

157

model signature security (where the adversary has unbounded space throughout the game),

we also require incompressible signature security that utilizes the following experiment for ad-

versaryA = (A1,A2):

Signature Forgery Experiment SigForgeIncomSig
A,Π (λ):

• The adversaryA1, on input 1λ, outputs a space bound 1S.

• Run Gen(1λ, 1S) to obtain keys (vk, sk).

• The adversaryA1 is given the public key vk, and submits an auxiliary input aux.

• For q = poly(λ) rounds,A1 submits a messagem, and receives σ ← Sign(sk,m). At

the end of the last round,A1 produces a state st of size at most S.

• The adversaryA2 is given the public key vk, the state st, and the auxiliary input aux,

and outputs a signature σ′. If Ver(vk, σ′) outputs⊥, output 0. Otherwise, output 1.

Notice that traditionally, we would require Ver(vk, σ′) to be distinct from the messages

m’s queried before, but here we have no such requirement. Also, notice that allowing the ad-

versary to submit and later receive the auxiliary input aux is equivalent to allowingA1,A2 to

just have shared randomness at the beginning of the experiment and that, in the non-uniform

setting, the definition would be the same without aux sinceA1,A2 are deterministic w.l.o.g.

With this experiment in mind, we now define the additional security requirement for an in-

compressible signature scheme.

Definition 5.5.1 (Incompressible Signature Security). For security parameters λ and S, an

incompressible signature schemeΠ = (Gen, Sig,Ver) has incompressible signature security, if

158

for all PPT adversariesA = (A1,A2):

Pr
[
SigForgeIncomSig

A,Π (λ) = 1
]
≤ negl(λ).

5.5.2 Construction

We present a very simple construction from classical public key signature schemes.

Construction 5.5.1. Let λ, S be security parameters. Given Sig = (Gen, Sign,Ver) a clas-

sical public key signature scheme with message space {0, 1}n+Lm where n = S + poly(λ) and

rate ρ′, we construct an incompressible signature schemeΠ = (Gen, Sign,Ver) as follows:

• Gen(1λ, 1S): Run Sig.Gen(1λ) to obtain (Sig.vk, Sig.sk). Output vk = Sig.vk and

sk = Sig.sk.

• Sign(sk,m): Sample randomnessR ∈ {0, 1}n, and outputσ ← Sig.Sign(Sig.sk, (R,m)).

• Ver(vk, σ): Run M ← Sig.Ver(Sig.vk, σ). If M = ⊥, output ⊥. Otherwise, if

M = (R,m), output m.

Sig can be computed in an low-space streaming fashion, since we can hash the message

in low space first usingMerkle-Damgård. ThenConstruction 5.6.1 can readily be computed

with low space streaming. The rate of this construction is

Lm

Lσ

=
Lm

(S+ Lm)/ρ′
= ρ′(1+ S/Lm)

−1.

159

5.5.3 Proof of Security

Theorem 5.5.1. Assuming the existence of a secure public key signature scheme with rate ρ′,

there exists an incompressible signature schemewith signature size ρ′(S+Lm+poly(λ)), public

key size poly(λ) and secret key size poly(λ). Furthermore, it supports streaming computation

using poly(λ) bits of memory.

Proof. We show this through a reduction proof. Concretely, we show how one can use an

adversaryA = (A1,A2) that breaks the incompressible signature security as a subroutine to

build an adversaryA′ the breaks the underlying classicalSig scheme. The adversaryA′works

as follows:

• Send 1λ toA1, receive 1S, and set n = S+ poly(λ).

• Receive vk from the challenger, forward it toA1, and receive aux fromA1.

• For each signing query mi made by A1, sample a random Ri ∈ {0, 1}n and make a

query (Ri,mi) to the challenger. Receive back σi and forward it directly toA1.

• WhenA1 produces a state st, send vk, st and aux toA2. Output whatA2 outputs as

σ′.

Notice that if A wins, that means Ver(vk, σ′) = (R′,m′) ̸= ⊥. If m′ ̸∈ {mi}i, then

(R′,m′) is a pair not queried before byA′, and thusA′ wins the game. Ifm′ = mj for some

j, then we argue that with overwhelming probability R′ ̸= Rj, and hence A′ wins as well.

Indeed this is true since

H∞(Rj|st, vk, {mi}i) ≥ S+ poly(λ)− S = poly(λ).

160

ThereforeRj is unpredictable conditioned onA2’s view, so the probability ofA2 producing

someR′ = Rj is negligible.

5.6 Rate-1 Incompressible Signatures

5.6.1 Incompressible Encoding

Moran and Wichs79 give the definition for incompressible encodings and show construc-

tion based on either the Decisional Composite Residuosity (DCR) or LearningWith Errors

(LWE) assumptions, in either the random oracle model or the CRS model. We modify the

definition slightly to better accommodate the syntax in this chapter.

Definition 5.6.1 (Incompressible Encodings79). Letλ be security parameters. An incompress-

ible encoding scheme for message space {0, 1}Lm and codeword space {0, 1}Lc is a pair of PPT

algorithms Code = (Enc,Dec) that utilizes the following syntax:

• Enc(1λ,m)→ c on input the security parameter and a message, outputs a codeword c.

• Dec(c)→ m on input a codeword, outputs the decoded message m.

The “rate” of the incompressible encoding is Lm/Lc.*

We additionally require correctness and S-incompressibility†:

Definition 5.6.2 (Correctness). For all λ ∈ N and m ∈ M, Pr[Dec(Enc(1λ,m)) = m] ≥

1− negl(λ).

Next, consider the following experiment for adversaryA = (A1,A2):

Codeword Compression Experiment CompIncomCode
A,Code (λ, S):

*This is equivalent to the α-expansion property as defined in79 for α = Lc/Lm.
†This is equivalent to β-incompressibility as defined in79 for β = S.

161

• On input 1λ, the adversaryA1 submits amessagem and auxiliary input aux. It receives

c← Enc(1λ,m), and produces a state st of size at most S.

• The adversary A2 is given the state st, the message m, and the auxiliary information

aux; it produces a codeword c′. Output 1 if and only if c′ = c.

Definition 5.6.3 (S-Incompressibility). For security parameterλ, we require that for all PPT

adversaryA = (A1,A2):

Pr
[
CompIncomCode

A,Code (λ, S) = 1
]
≤ negl(λ).

5.6.2 Construction

Nowwe showhowwemodifyConstruction 5.5.1 to get an incompressible signature scheme

with a rate of 1. Essentially we can think of the procedure of attaching a long random string

inConstruction 5.5.1 as a form of an incompressible encodingwith a poor rate. Here we just

need to replace it with an incompressible encoding with a rate of 1.

Construction 5.6.1. Let λ, S be security parameters. Given Sig = (Gen, Sign,Ver) a classi-

cal signature scheme with rate 1, and Code = (Enc,Dec) an incompressible encoding scheme

with rate 1andS-incompressibility, we construct an incompressible signature schemeΠ = (Gen,

Sign,Ver) as follows:

• Gen(1λ, 1S): Run Sig.Gen(1λ) to obtain (Sig.vk, Sig.sk). Output vk = Sig.vk and

sk = Sig.sk.

• Sign(sk,m): First compute the codeword c ← Code.Enc(1λ,m), and then compute

σ ← Sig.Sign(Sig.sk, c).

162

• Ver(vk, σ): Run c ← Sig.Ver(Sig.vk, σ). If c = ⊥, output ⊥. Otherwise, output

m← Code.Dec(c).

The rate of our scheme is the product of the rates of the incompressible encoding and

standard-model signature scheme. We can construct a classical signature scheme with rate

1 − o(1) from any one-way function by hashing the message using a universal one-way hash

function, and then signing the hash value. Our incompressible signatures therefore have rate

1− o(1), in the CRS or random oracle model.

Theorem 5.6.1. Assuming the existence of a secure public key signature scheme with rate 1 −

o(1) and an incompressible encoding scheme [in the CRS/RO model] with rate 1 − o(1), there

exists an incompressible signature scheme [in the CRS/RO model] with rate 1 − o(1), public

key size poly(λ) and secret key size poly(λ). Furthermore, it supports streaming computation

using poly(λ) bits of memory, assuming that the incompressible encoding scheme does as well

[either in the random oracle model, or with the streaming of the CRS in the CRSmodel]. If the

incompressible encoding scheme in theCRSmodel is only selectively secure, then so is the resulting

incompressible signature scheme.

Proof. Assume towards contradiction that there exists an adversaryA = (A1,A2) that wins

the incompressible signature game. Let {mi}i be the message queries made byA1, {σi}i the

responses, and {ci = Sig.Ver(vk, σi)}i. Let σ′ beA2’s forgery, and c′ = Sig.Ver(vk, σ′).

Let p be the probability thatA wins and c′ /∈ {ci}i. The security of the standard-model

signature scheme immediately implies that p is negligible: simply devise a new adversaryA′

that is the same asA, except that it encodes every messagemi into ci ← Code.Enc(1λ,mi)

before making a signing query.

163

Let r be the probability that A wins and c′ ∈ {ci}. The security of the incompressible

encoding implies that r is negligible: we construct a new adversary A′′ which sets up the

standard-model signature for itself and simulates the entire view ofA. The exception is that

it guesses a random i∗, and forwards the mi∗ as it’s challenge message; when it receives ci∗

from the encoding challenge, it computes σi∗ ← Sig.Sign(sk, ci∗). With probability r/q,

this adversary is able to reproduce ci∗ , despite compressing it. Here, q is the number of queries

made.

We therefore have thatAwins with probability p+ r, which is negligible.

5.6.3 Equivalence to Incompressible Encoding

Lastly, we quickly show that incompressible signatures are equivalent to incompressible en-

codings (plus one-way functions) by showing how to construct an incompressible encoding

scheme from an incompressible signature scheme.

Construction 5.6.2. Letλ be a security parameter. Given Sig = (Gen, Sign,Ver) an incom-

pressible signature schemewith rate 1 and small verification keys, we construct an incompressible

encoding schemeΠ = (Enc,Dec,Ver) as follows:

• Enc(1λ,m): Sample (Sig.vk, Sig.sk) ← Sig.Gen(1λ, 1S), and then compute σ ←

Sig.Sign(Sig.sk,m). Output c = (Sig.vk, σ).

• Dec(c = (Sig.vk, σ)): Simply output m← Sig.Ver(Sig.vk, σ).

The codeword length is the signature length (equal to message length if Sig has rate 1)

plus the length of the verification length. Hence the rate is 1 if the verification keys are short.

164

Correctness follows directly from the correctness of the signature scheme. Security also fol-

lows directly: if an adversary using a state st of size at most S is able to produce c′ = c, then

it has also produced a valid signature σ and hence wins the incompressible signature security

game. Therefore, by Construction 5.6.1 and 5.6.2, incompressible signatures and incom-

pressible encodings (plus one-way functions) are equivalent.

5.7 Constructing Rate-1 Functional Encryption

Here, we build rate-1 functional encryption (FE). For our application, we only need one

key security. However, our construction satisfies many-key security, though we need indis-

tingishability obfuscation (iO).We leave it as an open question whether such high-rate single

key FE can be built from standard tools.

Our construction is based on the techniques of Boneh and Zhandry21, who build from

iO something called private linear broadcast encryption, which is a special case of general FE.

A number of issues arise in generalizing their construction to general functions, which we

demonstrate how to handle.

5.7.1 Building Blocks

Definition 5.7.1 (Indistinguishability Obfuscation9). An indistinguiability obfuscator iO

for a circuit class {Cλ} is a PPT uniform algorithm satisfying the following conditions:

• Functionality: For anyC ∈ Cλ, thenwith probability 1 over the choice ofC′ ← iO(1λ,C),

C′(x) = C(x) for all inputs x.

165

• Security: For all pairs of PPT adversaries (S,D), if there exists a negligible function α

such that

Pr[∀x,C0(x) = C1(x) : (C0,C1, σ)← S(λ)] > 1− α(λ)

then there exists a negligible function β such that

∣∣ Pr[D(σ, iO(λ,C0)) = 1]− Pr[D(σ, iO(λ,C1)) = 1]
∣∣ < β(λ)

WhenCλ is the class of all polynomial-size circuits, we simply call iO an indistinguishabil-

ity obfuscator. There are several known ways to construct indistinguishability obfuscation:

• Garg et al.47 build thefirst candidate obfuscation fromcryptographicmultilinearmaps.

• Provably from novel strong circularity assumptions24,51,95

• Provably from “standard” assumptions71: (sub-exponentially secure) LWE, LPNover

fields, bilinear maps, and constant-locality PRGs

Definition 5.7.2 (Puncturable PRF20,73,23). A puncturable PRFwith domainXλ and range

Yλ is a pair (Gen,Punc) where:

• Gen(1λ) outputs an efficiently computable function PRF : Xλ → Yλ

• Punc(PRF, x) takes as input a function PRF and an input x ∈ Xλ, and outputs a

“punctured” function PRFx.

166

• Correctness: With probability 1 over the choice of PRF← Gen(1λ),

PRFx(x′) =

PRF(x′) if x′ ̸= x

⊥ if x′ = x

• Security: For all x ∈ Xλ, (PRFx,PRF(x)) is computationally indistinguishable from

(PRFx, y), where PRF← Gen(1λ) and y← Yλ.

Such puncturable PRFs can be built from any one-way function54.

We now give a new definition of a type of signature scheme with a single-point binding

(SPB) property. This allows, given amessagem, for generating a fake verification key together

with a signature on m. The fake verification key and signature should be indistinguishable

from the honest case. Yet there are no signatures on messages other than m relative to the

fake verification key.21 implicitly constructs such signatures from iO and one-way functions,

but with a logarithmic message space, which was good enough for their special-purpose FE

scheme. In our case, we need to handle very large exponential message spaces. The problem

with21’s approach is that the security loss is proportional to themessage space; to compensate

requires assuming (sub)exponential hardness, and also setting the security parameter to be

larger than the message length. This results in the signature size being polynomial in the

message size, resulting in a low-rate FE scheme. SPB signatures avoid the exponential loss, so

we can keep the security parameter small, resulting in a rate-1 FE scheme.

Definition 5.7.3. A single-point binding (SPB) signature is a quadruple of algorithms (Gen,

Sign,Ver,GenBind) where Gen, Sign,Ver satisfy the usual properties of a signature scheme.

Additionally, we have the following:

167

• (vk, σ)← GenBind(1λ,m) takes as input amessagem, and produces a verification key

vk and signature σ.

• For any messages m and with overwhelming probability over the choice of (vk, σ) ←

GenBind(1λ,m), Ver(vk, σ′) ∈ {m,⊥} for any σ′. That is, there is no message m′ ̸=

m such that there is a valid signature of m′ relative to vk.

• Foranym,GenBind(1λ,m)and (vk, Sign(sk,m))are indistinguishable, where (vk, sk)←

Gen(1λ). Note that this property implies that Ver(vk, σ) accepts and output m, when

(vk, σ)← GenBind(1λ,m).

We explain how to construct SPB signatures in Section 5.7.3, either from leveled FHE

(and hence LWE), or from iO and one-way functions.

Our Rate-1 FE Scheme. We now give our rate-1 FE scheme:

Construction 5.7.1. Let iO be an indistinguishability obfuscator,Genbe aPRF, (Gen′, Sig,Ver)

a signature scheme, and PRG : {0, 1}λ → {0, 1}2λ,PRG′ : {0, 1}λ → {0, 1}Lm be a PRG.

• Setup(1λ): Sample PRF ← Gen(1λ). Set msk = PRF and mpk = iO(1λ,PEnc),

where PEnc is the program given in Figure 5.1.

• KeyGen(msk, f): output skf ← iO(1λ,PDec,f), where PDec,f is the program given in

Figure 5.2.

• Enc(mpk,m): Choose a random r, and evaluate (t, v) ← mpk(r). Then parse v =

(w, u). Set c = PRG′(w) ⊕ m. Next run (vk, sk) ← Gen′(1λ; u), using u as the

random coins for Gen′. Compute σ ← Sign(sk, c). Output (t, σ).

168

• Dec(skf, (t, σ)) = skf(t, σ)

Figure 5.1: The program PEnc.

Inputs: r
Constants: PRF

1. t← PRG(r).

2. v← PRF(t).

3. Output (t, v).

Figure 5.2: The program PDec,f.

Inputs: t, σ
Constants: PRF

1. (w, u)← PRF(t)

2. (vk, sk)← Gen′(1λ; u).

3. c← Ver(vk, σ). If c = ⊥, abort and output⊥.

4. Output f(PRG′(w)⊕ c).

Correctness follows immediately from the correctness of the various components. No-

tice that the ciphertext size is Lm + poly(λ), provided the signature scheme outputs short

signatures. Therefore, construction 5.7.1 has rate 1− o(1).

Provided the random coins for (Gen′, Sign,Ver) are independent of the message length,

PEnc has size poly(λ), independent of the message length. IfGen′, Sign can be evaluated in a

low-space streaming fashion, then so can Enc.

5.7.2 Proof of Security

Sequence of Hybrids

• H0: This is the FE security experiment, where the bit b in the experiment is fixed to

be 0. Note that in this hybrid, the challenge ciphertext is generated as (t∗, σ∗), where

r∗ ← {0, 1}λ, t∗ ← PRG(r∗), (w∗, u∗)← PRF(t∗), x∗ ← PRG′(w∗), c∗ ← x∗⊕m0,

(vk∗, sk∗)← Gen′(1λ; u∗), and σ∗ ← Sign(sk∗, c∗).

169

• H1: This is identical toH0, except that we now generate t∗ uniformly at random: t∗ ←

{0, 1}2λ.

• H2: This is the same asH1, except that we change the way we generatempk, skf. First

compute PRFt∗ ← Punc(PRF, t∗), (w∗, u∗) ← PRF(t∗). Then let (vk∗, sk∗) ←

Gen′(1λ; u∗) and x∗ = PRG(w∗). We now compute mpk ← iO(1λ,PpuncEnc) and

answer secret key queries with skf ← iO(1λ,PpuncDec). Here, PpuncEnc and PpuncDec,f are the

programs in Figures 5.3 and 5.4

• H3: This is identical toH2, except that now we generate w∗, u∗ uniformly at random,

instead of (w∗, u∗)← PRF(t∗).

• H4: This is identical toH3 except thatwenowgenerate x∗ uniformly at random instead

of x∗ ← PRG(w∗).

• H5: This is identical toH4, except for the following changes:

– We generate c∗ uniformly at random at the beginning of the experiment.

– After the challenge query, we generate x∗ = c∗ ⊕ m0. Note that x∗ is the only

placem0 enters the experiment.

• H6: This is identical toH5, except now we generate (vk∗, σ∗)← GenBind(1λ, c∗).

• H7 throughH13: HybridH7+i is identical toH6−i, except thatm0 is replaced withm1.

ThusH13 is the FE security experiment where b is fixed to be 1.

170

Inputs: m; r
Constants: PRF t∗ , t∗

1. t← PRG(r). If t = t∗, immediately abort and output⊥.

2. v← PRF t∗ (t).

3. Output (t, v).

Figure 5.3: The program PpuncEnc . Differences from PEnc highlighted in yellow.

Inputs: t, σ

Constants: PRF t∗
1 ,PRF

t∗
2 , t∗, x∗, vk∗

1. If t ̸= t∗, skip to Step 2. If t = t∗, run c← Ver(vk∗, σ);

if c = ⊥, abort and output⊥, otherwise abort and output f(x∗ ⊕ c).

2. (w, u)← PRF t∗ (t)

3. (vk, sk)← Gen′(1λ; u).

4. c← Ver(vk, c, σ). If c = ⊥, abort and output⊥.

5. Output f(PRG(w)⊕ c).

Figure 5.4: The program PpuncDec,f. Differences from PEnc,f highlighted in yellow.

Proofs of Hybrid Steps

Lemma 5.7.1. If PRG is a secure PRG, then no PPT adversary can distinguish between H0

and H1 (respectively H12 and H13) except with negligible probability.

Proof. The only difference between the hybrids is how we generate t∗; inH0 it is pseudoran-

dom and inH1 it is uniformly random. Thus indistinguishability follows immediately from

the security of PRG.

171

Lemma 5.7.2. If iO is a secure indistinguishability obfuscator, then no PPT adversary can

distinguish between H1 and H2 (respectively H11 and H12) except with negligible probability.

Proof. Note that, with overwhelming probability, the uniformly random t∗ is not in the

sparse image of PRG. Thus, with overwhelming probability, the abort step in PpuncEnc is never

triggered. On all t ̸= t∗,PRF andPRFt∗ behave identically. Thus,PEnc andPpuncEnc have identi-

cal functionalities. Thus their obfuscations are indistinguishable. Likewise, PDec,f, on input

(t∗, c, σ), would compute (vk, sk) ← Gen′(1λ; u∗), which would exactly output (vk∗, sk∗).

Provided the signature accepted, it would output f(m) where m = PRG(w∗) ⊕ c. Thus

PDec,f and PDec,f behave identically on all inputs of this form. On inputs (t, c, σ)with t ̸= t∗,

the programs trivially behave identically. Thus they are identical on all inputs, and their ob-

fuscations are indistinguishable.

Lemma 5.7.3. If (Gen′,Punc) is a secure puncturable PRF, then no PPT adversary can dis-

tinguish between H3 and H4 (respectively H10 and H11) except with negligible probability.

Proof. The only difference between these hybrids is thatw∗, u∗ switch frombeing outputs of

PRF(t∗) to being uniformly random. But since the rest of the experiment can be simulated

using only PRFt∗ , security follows immediately from punctured PRF security.

Lemma 5.7.4. If PRG′ is a secure PRG, then no PPT adversary can distinguish H3 and H4

(respectively H9 and H10) except with negligible probability.

Proof. The only difference between the hybrids is that we switch from x∗ being pseudoran-

domly generated from a randomw∗ to x∗ being uniform. Indistinguishability follows imme-

diately from the security of PRG′.

Lemma 5.7.5. H4 and H5 (respectively H8 and H9) are identically distributed.

172

Proof. Since x∗ is uniform, so is c∗ = x∗⊕mb. In both hybrids, we choose c∗ or x∗ randomly,

and solve for the other. Thus the distributions are identical.

Lemma 5.7.6. If (Gen′, Sign,Ver,GenBind) is a secure SPB signature scheme, then no PPT

adversary can distinguish between H5 and H6 (respectively H7 and H8) except with negligible

probability.

Proof. Note that neither hybrid requires sk∗, and the only difference is how we generate

vk∗, σ∗: inH5 (respectivelyH8) vk∗ is generated from Gen′ using fresh random coins u∗ and

σ∗ is the signature on c∗, whereas inH6 (respectivelyH7), (vk∗, σ∗) is generated asGenBind(1λ, c∗).

Indistinguishability follows immediately from the security of the signature scheme.

Lemma 5.7.7. If iO is a secure indistinguishability obfuscator, then no PPT adversary can

distinguish between H6 and H7.

Proof. The only difference between the twohybrids is whether x∗ = c∗⊕m0 or x∗ = c∗⊕m1,

and the only place x∗ enters the experiment is in Ppunc
Dec,f. Moreover, x∗ only affects the output

f(x∗ ⊕ c), and only in the event that the input (t, c, σ) satisfies t = t∗ and Ver(vk∗, c, σ)

accepts.

By the single-point binding of vk∗, all inputs (t∗, c, σ) reject, except for c = c∗. But in

the case c = c∗, we have that f(x∗ ⊕ c) = f(mb). The FE security experiment guarantees that

f(m0) = f(m1). Thus the programs Ppunc
Dec,f have identical functionality in both hybrids, and

so their obfuscations are indistinguishable.

Theorem5.7.1. If iO is a secure indistinguishability obfuscator,PRG,PRG′ are secure PRGs,

(Gen′, Sign,Ver,GenBind) is a secure SPB signature, and (Gen,Punc) is a secure puncturable

pseudorandom function, then Construction 5.7.1 is a secure functional encryption scheme.

173

5.7.3 Constructing SPB Signatures

We now show how to construct single-point binding signatures.

A low-rateconstruction. Wefirst describe a simple low-rate construction. This con-

struction is not good enough for our purposes, as our FE scheme inherits the rate of the

signature scheme. But we will later show how to compile any low-rate construction into a

high-rate construction.

Our construction is justLamport one-time signatures,where theunderlingone-way func-

tion is replaced with a PRG:

Construction 5.7.2. Let PRG : {0, 1}λ → {0, 1}2λ be a PRG. Then for a desired message

length n, our construction works as follows:

• Gen(1λ): for i ∈ {1, . . . , n}, b ∈ {0, 1}, sample ski,b ← {0, 1}λ and set vki,b =

PRG(ski,b). Output (vk = (vki,b)i,b , sk = (ski,b)i,b).

• Sign(sk,m): output σ = (m, (ski,mi)i)

• Ver(vk, σ): Extract m from σ. For each i ∈ {1, . . . , n}, check that PRG(ski,mi) =

pki,mi . If all checks pass, output m. Otherwise output⊥.

• GenBind(1λ,m): for each i ∈ {1, . . . , n}, sample ski,mi ← {0, 1}λ and set vki,mi =

PRG(ski,mi). Then samplevki,1−mi ← {0, 1}2λ uniformly. Output (vk = (vki,b)i,b , σ =

(m, (ski,mi)i)).

In other words, to bind to a message, simply replace all the public key components that

do not correspond to the message with uniform randomness.

174

Binding follows from the fact that, with overwhelming probability vki,1−mi in binding

mode will have no pre-images. Since any message other thanmmust differ fromm on some

bit i, suchmessages will not have any signatures. Security follows immediately from the pseu-

dorandomness of PRG.

The problemwith this signature scheme is that its rate is poor: the signature on amessage

is a multiplicative poly(λ) factor larger than the message itself

From low-rate to high-rate using SPB hashes. We now describe a new object, re-

lated to somewhere statistically binding (SSB) hashing68, which we call single-point binding

(SPB) hashing.

Definition 5.7.4. A single-pointbinding (SPB)hash function is a triple of algorithms (Gen,H,

GenBind) where:

• Gen(1λ) produces a hashing key hk.

• H(hk,m) deterministically produces a hash h, with |h| ≪ |m|.

• GenBind(1λ,m∗) takes as input a message m∗, and produces a hashing key hk with the

property that, with overwhelming probability over the choice of hk← GenBind(1λ,m∗),

for any m ̸= m∗, H(hk,m) ̸= H(hk,m∗).

• For any message m∗, (m∗,Gen(1λ)) is computationally indistinguishable from

(m∗,GenBind(1λ,m∗)).

We now use a SPB hash to improve the rate of an SPB signature. The construction is the

usual hash-and-sign signature scheme: to sign a message m, simply compute the signature

175

σ ← H(hk,m), and output (m, σ). If the underlying signature is an SPB signature, then

GenBind for the new signature simply binds hk tom, and then binds vk toH(hk,m).

IfH hashes to a size that is independent of the message, then the resulting signature has

rate 1, regardless of the rate of the original signature.

Constructing SPBHashing. It remains to construct an SPB hash function.

We first briefly note that such hash functions can be build from fully homomorphic en-

cryption (FHE), following essentially the same construction of somewhere statistically bind-

ing hashing from68. The hashing key is normally the encryption of a random string r of

length equal to the message. To hash a message m, homomorphically compute an encryp-

tion of b, the result of comparing m with r. To bind the hashing key to m, simply encrypt

the messagem. FHE security immediately implies security. For binding, the messagem will

then hash to an encryption of 1, whereas any other message will hash to an encryption of 0.

By the correctness of the FHE scheme, encryptions of 0 and 1 must be disjoint.

Next, we explain how to get a construction from iO and one-way functions. Since we

are already using iO and one-way functions to build our FE scheme, these assumptions are

redundant.

Construction 5.7.3. Let iO be an indistinguishability obfuscator, Gen′ the generation algo-

rithm for a PRF, and PRG a pseudorandom generator.

• Gen(1λ): Sample PRF ← Gen′(1λ), and output hk = iO(1λ,Phash), where Phash is

the program given in Figure 5.5.

• H(hk,m) = hk(m)

176

• GenBind(1λ,m∗): Sample PRF ← Gen′(1λ), compute PRFm∗ ← Punc(PRF,m∗),

and choose a random string x∗. Output hk = iO(1λ,Pbindtthash), where Pbindtthash is the program

given in Figure 5.6.

Remark 5.7.1. If we want our rate-1 incompressible encryption to have encryption be com-

putable in low space given a stream of m, then we need our rate-1 FE encryption to be likewise

be computable in low space given a message stream. This in turn means we need to be able to

evaluate H(hk,m) in low space given the message stream, and given the random coins used to

construct hk. We can always assume the random coins are small. In our construction, we cannot

compute hk itself in low space, since it is a large obfuscated program. However, we can neverthe-

less compute H(hk,m) = PRG(PRF(m)) in low-space, provided PRF has small keys and can

be evalauted on a message stream in low space (the output of PRF is small, so PRG can easily

be computed once we have PRF(m). Most PRFs have this property, including the puncturable

PRF from one-way functions due to53. This gives us the desired rate-1 incompressible encryption

with low-space encryption.

Inputs: m
Constants: PRF

1. Output PRG(PRF(m))

Figure 5.5: The program Phash.

For binding, note that the random x∗ outputted on input m∗ is, with overwhelming

probability, outside the range of PRG. But all inputs m ̸= m∗ must output points in the

range of PRG. Thus, there are no collisions withm∗.

For security, use the following sequence of hybrids:

177

Inputs: m
Constants: PRF m∗

, m∗, x∗

1. Ifm = m∗, output x∗. Otherwise,

2. Output PRG(PRF(m))

Figure 5.6: The program Pbindhash. Differences from Phash are highlighted in yellow.

• H0: this is the case where hk← Gen(1λ).

• H1: here, we generate hk = iO(Pbindhash), except that x∗ is set to PRG(PRF(m∗)). Note

that this x∗ is exactly the output of Phash(m∗). Hence in this case Pbindhash and Phash have

identical functionalities. Indistinguishability follows from iO.

• H2: here we generate x∗ = PRG(s∗) for a uniform random value s∗. The only differ-

ence fromH1 is that we replace PRF(m∗) with s∗. But since only the punctured PRF

PRFm∗ is needed, this change follows from punctured PRF security.

• H3: here, we generate hk ← GenBind(1λ,m∗). The only difference from H2 is that

we replace x∗ = PRG(s∗)with a uniformly random x∗. Since s∗ is uniformly random,

this follows immediately from the pseudorandomness of PRG.

178

6
Multi-User Incompressible Encryption

179

6.1 Introduction

Bounded-StorageMassSurveillance. Weconsider a scenariowhere apowerful (e.g.,

state-level) adversary wants to performmass surveillance of the population. Even if the pop-

ulation uses encryption to secure all communication, the adversary can collect large amounts

of encrypted data from the users (e.g., by monitoring encrypted traffic on the Internet). The

data is encrypted and hence the adversary does not learn anything about its contents when it

is collected. However, the adversary may store this data for the future. Later, it may identify

various “persons of interest” and perform expensive targeted attacks to get their secret keys

(e.g., by remote hacking or by physically compromising their devices). We will assume the

adversary is capable of eventually getting any secret key of any user of its choosing. Can we

still achieve any meaningful notion of security against such mass-surveillance?

One option is to rely on cryptosystems having forward secrecy64, which exactly addresses

the problem of maintaining security even if the secret key is later compromised. Unfortu-

nately, forward-secure encryption schemes inherently require either multi-round interaction

between the sender and receiver or for the receiver to perform key updates, both of which can

be impractical or impossible in many natural scenarios. Without these, it may seem that no

reasonable security is possible – if the adversary collects all the ciphertexts and later can get

any secret key, clearly it can also get any plaintext!

In this chapter, we restrict the adversary to have bounded storage, which is much smaller

than the total of size of all the encrypted data it can observe. This is a reasonable assumption

since the total communication of an entire population is likely huge.* As a running example

*Global annual Internet traffic has long surpassed 1 zettabyte (1021 bytes)11, while total world-wide data-
center storage is only a couple zettabytes in 202236.

180

throughout the introduction, we will assume that the adversary’s storage capacity is 1% of

the total encrypted data size. We allow the adversary to observe all the encrypted data simul-

taneously and then compress it in some arbitrary way to fit within its storage budget. Later,

the adversary can get any secret key of any user of its choosing, and eventually it may even get

all the keys of all the users. What kind of security guarantees can we provide in this setting?

Clearly, the adversary can simply store 1% of the ciphertexts and discard the remaining

99%, which will allow it to later compromise the security of 1% of the users by getting their

secret keys. While onemay pessimistically see this as a significant privacy violation already, we

optimistically regard this as a potentially reasonable privacy outcome that’s vastly preferable

to the adversary being able to compromise all the users. For example, if the adversary later

chooses a random user and wants to learn something about their data, it will only be able to

do so with 1% probability, even if it can get their secret key. But can we argue that this is the

best that the adversary can do? In particular, we’d like to say that, no mater what compres-

sion strategy the adversary employs, it will be unable to learn anything about the contents of

99% of the ciphertexts, even if it later gets all the secret keys. Unfortunately, this is not gener-

ically true. For example, the adversary could store the first 1% of the bits of every ciphertext.

If the encryption scheme is (e.g.,) the one-time pad, then an adversary who later learns the

secret keys would later be able to learn the first 1% of every encrypted message of every user,

which may provide a pretty good idea of the overall message contents. In fact, it can get even

worse than this. If the encryption scheme is fully homomorphic, the adversary can individ-

ually compress each ciphertext into a small evaluated ciphertext encrypting some arbitrary

predicate of the data (e.g., was the message insulting of the supreme leader), and therefore

learn the outcome of this predicate about the encrypted data of every user. Even worse, if the

181

encryption scheme is multi-key fully homomorphic, the adversary can derive a compressed

ciphertext that encrypts the output of a joint computation over all the data of all the users, as

long as the output is sufficiently small. Thus, in general, an adversary whose storage capacity

is only 1%, may still be able to learn some partial information about the encrypted messages

of a 100% of the users. The question is then, whether or not it is indeed possible to guarantee

only 1% of users are compromised, and if so to actually design such a scheme.

ConnectiontoIncompressibleCryptography. Encryption schemes that offerpro-

tection against bounded-storage mass surveillance can be seen as a generalization of incom-

pressible encryption45,60,25 to the setting of multiple ciphertexts. To clarify the distinction, we

refer to the earlier notion of incompressible encryption as individually incompressible and

our new notion asmulti-incompressible.

In an individually incompressible encryption scheme, we can make the size of a cipher-

text flexibly large, and potentially huge (e.g., many gigabytes). An adversary observes a single

ciphertext, but cannot store it in its entirety and can instead only store some compressed ver-

sion of it. Security dictates that even if the adversary later gets the user’s secret key, it cannot

learn anything about the encrypted message. The work of Dziembowski45 gave a construc-

tion of one-time symmetric-key encryption with information-theoretic security in this set-

ting, and the previous chapter in this thesis showed how to achieve public-key encryption

in this setting, under the minimal assumption that standard public-key encryption exists.

The previous chapter, along with Branco et al.25, also constructed such public-key encryp-

tion schemes having rate 1, meaning that the size of the message can be almost as large as the

ciphertext size, and the latter work even showed how to do so under specific but standard

public-key assumptions.

182

In our new notion ofmulti-incompressible encryption, we also have the flexibility tomake

the ciphertext size arbitrarily large. But now the adversary observes a large number of cipher-

texts frommany users and compresses them down to something that’s roughly anα-fraction

of the size of all the original ciphertexts, for someα. In particular, the adversary’s storagemay

be much larger than a single ciphertext. Later the adversary gets all the secret keys, and we

want to say that the adversary can only learn something about a (roughly) α-fraction of the

messages, but cannot learn anything about the rest.

Our new notion of multi-incompressibility implies individual incompressibility. In par-

ticular, in the case of a single ciphertext, unless the adversary stores essentially all of it (i.e.,

α ≈ 1), it cannot learn anything about the encryptedmessage (= 100% of the messages). But

our notion is significantly more general. For example, individual incompressibility does not

even offer any guarantees if an adversary can take even 2 ciphertexts and compress themdown

to the size of 1, while multi-incompressibility ensures that one of the messages stays secure.

Formalizing multi-incompressibility is tricky: the natural indistinguishability-based ap-

proach would be to insist that the encryptions of two lists of messages are indistinguishable.

But unlike individually incompressible encryption, in our setting the adversary can always

learn something, namely the messages contained in ciphertexts it chose to store. We there-

fore need a fine-grained notion which captures that some messages to be learned, but other

messages remain completely hidden. We give details on our solution below.

Extracting randomness against correlated sources. Before getting to our re-

sults, we discuss randomness extraction, which is a central tool in all existing constructions

of incompressible encryption. A randomness extractor Ext takes as input a source of imper-

fect randomness X and uses it to distill out some (nearly) uniformly random string Y. Here,

183

we consider seeded extractors, which use a public uniformly random seed S as a catalyst to

extract Y = Ext(X; S), such that Y should be (nearly) uniform even conditioned on the seed

S.

While randomness extraction is very well studied, it is most often in the single-use case,

where a single string Y = Ext(X; S) is extracted from a single source X having sufficient

entropy. Here we ask: what if many strings Yi = Ext(Xi; Si) are extracted from multiple

sources Xi respectively (using independent random seeds Si), but where the sources Xi may

be arbitrarily correlated? What guarantees can be made? We consider the case where we only

know that the total joint entropy of all the sources is high, but we know nothing else about

their individual entropies; indeed some of the sources may have no entropy at all! In this

case, clearly not all of the extracted values Yi can be uniform, and some may even be entirely

deterministic. One may nevertheless hope that some of the extracted values remain uniform,

where the fraction of uniform values roughly correlates to combined total entropy rate of all

the sources. To the best of our knowledge, randomness extraction in this setting has not been

studied before.

6.1.1 Our Results.

FormalizingMulti-user IncompressibleEncryption. Wefirst providedefinitions

formulti-user incompressible encryption. Wedepart from the indistinguishability-based def-

initions of the prior work on incompressible cryptography45,60,25, and instead give a simu-

lation-based definition. Essentially, the definition says that anything that an adversary can

learn by taking many ciphertexts of different users, compressing them down sufficiently, and

later getting all the secret keys, can be simulated by a simulator that can only ask to see some

184

small fraction of the plaintexts but does not learn anything about the remaining ones. In the

single-instance case, this definition implies indistinguishability-based security, but appears

stronger. Nevertheless, existing constructions and proofs are readily adapted to satisfy simu-

lation security. The distinction becomes more important in the multi-user setting, however,

where simulation security allows us to naturally define what it means for some messages to

be revealed and some to remain hidden.

Multi-Instance Randomness Extractors. As our main technical tool, we explore

a new kind of extractor that we call a multi-instance randomness extractor, which aims to

solve the extraction problem outlined above. Syntactically, this is a standard extractor Y =

Ext(X; S) that takes as input a source X and a seed S and outputs some short randomness Y.

However, we now imagine that the extractor is applied separately to t correlated sources Xi,

with each invocationusing an independent seedSi, to derive extracted valuesYi = Ext(Xi; Si).

The only guarantee on the sources is that the total joint min-entropy of X = (X1, . . . ,Xt) is

sufficiently high. Any individual source Xi, however, may actually be deterministic (have 0

entropy), in which case the corresponding extracted value Yi is of course not random. How-

ever, provided the total min-enropy rate of X is high, it is guaranteed thatmany of the t ex-

tracted values are statistically-close uniform. Ideally, if the joint min-entropy rate of X is α,

we would hope that roughly αt of the extracted values are uniform.

Formalizing the above requires some care. For example, it may be the case that X is cho-

sen by selecting a random index i∗ ← [t], settingXi∗ to be all 0’s, and choosing the remaining

block Xj for j ̸= i∗ uniformly at random. In that case X has a very high entropy rate, but for

any fixed index i, the min-entropy of Xi is small (at most log t since with polynomial proba-

bility 1/t the value of Xi is all 0’s), and not enough to extract even 1 bit with negligible bias.

185

Therefore, we cannot argue that Yi = Ext(Xi; Si) is close to uniform for any particular index

i! Instead, we allow the set of indices i, for which Yi is close to uniform, itself be a random

variable correlated with X. (See Definition 6.3.1.)

We showconstructionsofmulti-instance randomness extractors nearing theoptimal num-

ber of uniform extracted values. In particular, we show that if the joint min-entropy rate

of X = (X1, . . . ,Xt) is α then there exists some random variable IX denoting a subset of

≈ α · t indices in [t] such that nobody can distinguish between seeing all the extracted values

Yi = Ext(Xi; Si) versus replacing all the Yi for i ∈ IX by uniform, even given all the seeds

Si. (See Corollary 6.3.1.) Our constructions are based on Hadamard codes (long seed) and

Reed-Muller codes (short seed). While the constructions themselves are standard, our anal-

ysis is novel, leveraging the list-decodability of the codes, plus a property we identify called

hinting. Hinting roughlymeans that the values of {Ext(x; Si)}i on some particular exponen-

tially large set of pairwise independent seeds Si can be compressed into a single small hint, of

size much smaller than x. This hinting property is a crucial feature in the local list-decoding

algorithms for these codes, but appears not to have been separately formalized/utilized as a

design goal for an extractor.*

Applications. We then show that multi-instance randomness extraction can be used es-

sentially as a drop-in replacement for standard randomness extractors in prior constructions

of individual incompressible encryption, lifting them to multi-incompressible encryption.

*The work of Aggarwal et al.1 studied a notion of extractors for “Somewhere Honest Entropic Look
Ahead” (SHELA) sources. The notions are largely different and unrelated. In particular: (i) in our work X
is an arbitrary source of sufficient entropy while Aggarwal et al.1 places additional restrictions, (ii) we use a
seeded extractor while Aggarwal et al.1 wants a deterministic extractor, (iii) we apply the seeded extractor sepa-
rately on each Xi while Aggarwal et al.1 applies it jointly on the entire X, (iv) we guarantee that a large fraction
of extracted outputs is uniform even if the adversary sees the rest, while in Aggarwal et al.1 the adversary cannot
see the rest.

186

As concrete applications, we obtain multi-incompressible encryption in a variety of settings:

• A symmetric key scheme with information-theoretic security, by replacing the extrac-

tor in Dziembowski45.

• A “rate-1” symmetric key scheme, meaning the ciphertext is only slightly larger than

themessage. Here, we assume either decisional composite residuosity (DCR) or learn-

ing with errors (LWE), matching25*.

• A public key scheme, assuming any ordinary public key encryption scheme, matching

the construction 5.3.1 from the previous chapter.

• A rate-1 public key scheme, under the same assumptions as Branco et al.25†. The

scheme has large public keys.

• A rate-1public key scheme that additionally has succinct public keys, assuming general

functional encryption, matching construction 5.4.1 from the previous chapter.

In all cases, we guarantee that if the adversary’s storage is an α fraction of the total size of all

the ciphertexts, then it can only learn something about a β ≈ α fraction of the encrypted

messages. We can make β = α − 1/p(λ) for any polynomial p in the security parameter λ,

by choosing a sufficiently large ciphertext size.

Multiple ciphertexts per user. Prior work, in addition to only considering a single

user, also only considers a single ciphertext per user. Perhaps surprisingly, security does not

*One subtlety is that, for all of our rate-1 constructions, we need a PRG secure against non-uniform adver-
saries, whereas the prior work could have used a PRG against uniform adversaries.

†Branco et al.25 explores CCA security, but in this chapter for simplicity we focus only on CPA security.

187

compose, and indeed for any fixed secret key size, we explain that simulation security for un-

bounded messages is impossible.

We therefore develop schemes for achieving a bounded number of ciphertexts per user.

We show how tomodify each of the constructions above to achievemulti-ciphertext security

under the same assumptions.

The Random Oracle Model. We show how to construct symmetric key multi-user

incompressible encryption with an unbounded number of ciphertexts per user and also es-

sentially optimal secret key and ciphertext sizes, from randomoracles. This shows that public

key tools are potentially not inherent to rate-1 symmetric incompressible encryption.

6.1.2 ConcurrentWork

A concurrent and independent work of Dinur et al.41 (Section 6.2) considers an extraction

problem that turns out to be equivalent to our notion ofMulti-InstanceRandomness Extrac-

tor. They study this problem in a completely different context of differential-privacy lower

bounds. They show that (in our language) universal hash functions are “multi-instance ran-

domness extractors” with good parameters, similar to the ones in our work. While concep-

tually similar, the results are technically incomparable since we show our result for hinting

extractors while they show it for universal hash functions. One advantage of our result is that

we showhow to construct hinting extractors with short seeds, while universal hash functions

inherently require a long seed. Their proof is completely different from the one in our paper.

The fact that multi-instance randomness extractors have applications in different con-

texts, as demonstrated in our work and Dinur et al.41, further justifies them as a fundamen-

188

tal primitive of independent interest. We believe that having two completely different tech-

niques/approaches to this problem is both interesting and valuable.

6.1.3 Our Techniques: Multi-Instance Randomness Extraction

We discuss how to construct a multi-instance randomness extractor Ext. Recall, we want to

show that, if the joint min-entropy rate of X = (X1, . . . ,Xt) is α then there exists some

random variable IX denoting a subset of ≈ α · t indices in [t] such that the distribution

(Si,Yi = Ext(Xi; Si))i∈[t] is statistically indistinguishable from (Si,Zi)i∈[t] where Zi is uni-

formly random for i ∈ IX and Zi = Yi otherwise.

A failed approach. A natural approach would be to try to show that every standard

seeded extractor is also a “multi-instance randomness extractor”. As a first step, we would

show that there is some random variable IX denoting a large subset of [t] such that the val-

ues Xi for i ∈ IX have large min-entropy conditioned on i ∈ IX. Indeed, such results are

known; see for example the “block-entropy lemma” of Dodis, Quach, and Wichs42 (also

Dziembowski46 and Damgård et al.34). In fact, one can even show a slightly stronger state-

ment that the random variables Xi for i ∈ IX have high min-entropy even conditioned on

all past blocks X1, . . . ,Xi−1. However, it cannot be true that Xi has high min-entropy con-

ditioned on all other blocks past and future (for example, think of X being uniform subject

to
⊕t

i=1 Xi = 0). Unfortunately, this prevents us for using the block-entropy lemma to an-

alyze multi-instance extraction, where the adversary sees some extracted outputs from all the

blocks.* It remains as a fascinating open problem whether every standard seeded extractor is

*This strategy would allow us to only prove a very weak version of multi-instance extraction when the
number of blocks t is sufficiently small. In this case we can afford to lose the t extracted output bits from the
entropy of each block. However, in our setting, we think of the number of blocks t as huge, much larger than

189

also a multi-instance randomness extractor or if there is some counterexample.*

Ourapproach. Weare able to showthatparticular seeded extractorsExtbasedonHadamard

or Reed-Muller codes are good multi-instance randomness extractors. For concreteness, let

us consider the Hadamard extractor Ext(x; s) = ⟨x, s⟩.† Our proof proceeds in 3 steps:

Step 1: Switch quantifiers.Weneed to show that there exists some randomvariable IX such

that every statistical distinguisher fails todistinguishbetween the twodistributions (Si,Yi)i∈[t]

and (Si,Zi)i∈[t]. We can use von Neumann’s minimax theorem to switch the order quanti-

fiers.‡ Therefore, it suffices to show that for every (randomized) statistical distinguisher D

there is some random variable IX such thatD fails to distinguish the above distributions.

Step 2: Define IX. For any fixed x = (x1, . . . , xt) we define the set Ix to consist of indices

i ∈ [t] such that D fails to distinguish between the hybrid distributions ({Sj}j∈[t],Z1, . . . ,

Zi−1,Yi, . . . ,Yt) versus ({Sj}j∈[t],Z1, . . . ,Zi,Yi+1, . . . ,Yt), where in both distributions we

condition on X = x. In other words, these are the indices where we can replace the next

extracted output by random and fool the distinguisher. We then define the random variable

IX that chooses the correct set Ix according to X. It is easy to show via a simple hybrid argu-

ment that with this definition of IX it is indeed true thatD fails to distinguish (Si,Yi)i∈[t] and

(Si,Zi)i∈[t].

Step 3: Argue that IX is large. We still need to show that IX is a large set, containing≈ α · t

the size/entropy of each individual block.
*We were initially convinced that the general result does hold and invested much effort trying to prove it

via some variant of the above approach without success. We also mentioned the problem to several experts in
the field who had a similar initial reaction, but were not able to come up with a proof.

†For the sake of exposition, here we only show the case where the extractor output is a single bit. In sec-
tion 6.3, we construct extractors with multiple-bit outputs.

‡Think of the above as a 2 player game where one player chooses IX, the other chooses the distinguisher
and the payout is the distinguishing advantage; theminimax theorem says that the value of the game is the same
no matter which order the players go in.

190

indices. To do so, we show that if IX were small (with non negligible probability) then we

could “guess” Xwith sufficiently high probability that would contradict X having high min-

entropy. In particular, we provide a guessing strategy such that for any x for which Ix is small,

our strategy has a sufficiently high chance of guessing x. First, we guess the small set Ix ⊆ [t]

as well as all of the blocks xi for i ∈ Ix uniformly at random. For the rest of the blocks i ̸∈ Ix,

we come up with a guessing strategy that does significantly better than guessing randomly.

We rely on the fact that distinguishing implies predicting, to convert the distinguisherD into

a predictor P such that for all i ̸∈ Ix we have: P(Si, {Sj,Ext(xj; Sj)}j∈[t]\{i}) = Ext(xi; Si)

with probability significantly better than 1/2. Now we would like to use the fact that the

Hadamard code (Ext(x; s) = ⟨x, s⟩)s is list-decodable to argue that we can use such predic-

tor P to derive a small list of possibilities for x. Unfortunately, there is a problem with this

argument. To call the predictor, the predictor requires an auxiliary input, namely auxi =

{Sj,Ext(xj; Sj)}j∈[t]\{i}. Supplying the auxi in turn requires knowing at least t bits about x.

We could hope to guess a good choice of auxi, but there may be a different good choice for

each i ∈ [t], and therefore wewould need to guess a fresh t bits of information about x just to

recover each block xi, whichwhen |xi| < t is worse than the trivial approach of guessing xi di-

rectly! Instead, we use a trick inspired by the proof of theGoldreich-Levin theorem. For each

block j ∈ [t], we guess the values of b(k) := ⟨xj, S(k)j ⟩ for a very small “base set” ofQ random

seeds S(1)j , . . . , S(Q)j . We can then expand this small “base set” of seeds into an exponentially

larger “expanded set” of 2Q − 1 seeds S(K)j :=
∑

k∈K S
(k)
j forK ⊆ [Q] \ ∅, and derive guesses

for b(K) := ⟨xj, S(K)j ⟩ by setting b(K) =
∑

k∈K b(k). By linearity, the expanded set of guesses is

correct if the base set is correct, and moreover the expanded sets of seeds (S(K)j)K are pairwise

independent for different setsK. Therefore, for each setK, we can derive the corresponding

191

aux
(K)
i . We can now apply Chebyshev’s bound to argue that if for each iwe take themajority

value for P(Si, aux(K)i) across all 2Q− 1 setsK, it is likely equal to Ext(xi; Si)with probability

significantly better than 1/2. Notice that we got our saving by only guessing Qt bits about

x = (x1, . . . , xt) for some small valueQ (roughly log(1/ε) if we want indistinguishability ε)

and were able to use these guesses to recover all the blocks xi for i ̸∈ Ix.

Generalizing. We generalize the above analysis for theHadamard extractor to any extrac-

tor that is list-decodable and has a “hinting” property as discussed above. In particular, this

also allows us to use a Reed-Muller based extractor construction with a much smaller seed

and longer output length.

6.1.4 Our Techniques: Multi-Incompressible Encryption

We then move to considering incompressible encryption in the multi-user setting.

Definition. We propose a simulation-based security definition for multi-incompressible

encryption. Roughly, the simulator first needs to simulate all the ciphertexts for all the in-

stanceswithout seeing any of the message queries, corresponding to the fact that at this point

the adversary can’t learn anything about any of the messages. To model the adversary then

learning the secret keys, we add a second phase where the simulator can query for a subset of

the messages, and then must simulate all the private keys. We require that no space-bounded

distinguisher can distinguish between the receiving real encryptions/real private keys vs re-

ceiving simulated encryptions/keys. The number of messages the simulator can query will

be related to the storage bound of the distinguisher.

192

Upgrading to multi-incompressible encryption using multi-instance ran-

domnessextraction. All prior standard-model constructionsof individual incompress-

ible encryption45,60,25 utilize a randomness extractor. For example, Dziembowski45 gives the

following simple construction of a symmetric key incompressible encryption scheme:

• The secret key k is parsed as (s, k′) where s is a seed for a randomness extractor, and k′

is another random key.

• To encrypt a message m, choose a large random string R, and output c = (R, d =

Ext(R; s)⊕ k′ ⊕m).

The intuition for (individual) incompressible security is that an adversary that cannot

store essentially all of c can in particular not store all of R, meaning R has min-entropy con-

ditioned on the adversary’s state. The extraction guarantee then shows that Ext(R; s) can be

replaced with a random string, thus masking the messagem.

We demonstrate that our multi-instance randomness extractors can be used as a drop-

in replacement for ordinary random extractors in all prior constructions of individual in-

compressible encryption, upgrading them to multi-incompressible encryption. In the case

of Dziembowski45, this is almost an immediate consequence of our multi-instance random-

ness extractor definition. Our simulator works by first choosing random s for each user, and

sets the ciphertexts of eachuser to be randomstrings. Then it obtains from themulti-instance

randomness extractor guarantee the set of indices i where Yi is close to uniform. For these

indices, it sets k′ to be a uniform random string. This correctly simulates the secret keys for

these i.

For i where Yi is not uniform, the simulator then queries for messages for these i. It

193

programs k′ as k′ = d ⊕ Ext(R; s) ⊕ m; decryption under such k′ will correctly yield m.

Thus, we correctly simulate the view of the adversary, demonstrating multi-incompressible

security.

Remark 6.1.1. The set of indicies where Yi is uniform will in general not be efficiently com-

putable, and multi-instance randomness extraction only implies that the set of indices exist.

Since our simulator must know these indices, our simulator is therefore inefficient. In general,

an inefficient simulator seems inherent in the standard model, since the adversary’s state could

be scrambled in a way that hides which ciphertexts it is storing.

We proceed to show that various constructions from the previous chapter and the work

by Branco et al.25 are also secure in the multi-user setting, when plugging in multi-instance

randomness extractors. In all cases, the proof is essentially identical to the original single-

user counterpart, except that the crucial step involving extraction is replaced with the multi-

instance randomness extractionguarantee. We thusobtain a variety ofparameter size/security

assumption trade-offs, essentially matching what is known for the single-user setting.

One small issue that comes up is that, once we have invoked the multi-instance random-

ness extractor, the simulation is inefficient. This presents a problem in some of the security

proofs, specifically in the “rate-1” setting where messages can be almost as large as cipher-

texts. In the existing proofs in this setting, there is a computational hybrid step that comes

after applying the extractor. Naively, this hybrid step would seem to be invalid since the

reduction now has to be inefficient. We show, however, that the reduction can be made ef-

ficient as long as it is non-uniform, essentially having the choice of indices (and maybe some

other quantities) provided as non-uniform advice. As long as the underlying primitive for

these post-extraction hybrids has non-uniform security, the security proof follows.

194

Multipleciphertexts peruser. We also consider the settingwhere theremay bemul-

tiple ciphertexts per user, which has not been considered previously.

It is not hard to see that having an unbounded number of ciphertexts per user is impossi-

ble in the standard model. This is because the simulator has to simulate everything but the

secret key without knowing the message. Then, for the ciphertexts stored by the adversary,

the simulator queries for the underlying messages and must generate the secret key so that

those ciphertexts decrypt to the given messages. By incompressiblity, this means the secret

key length must be at least as large as the number of messages.

We instead consider the case of bounded ciphertexts per user. For a stateful encryption

scheme, it is trivial to upgrade a scheme supporting one ciphertext per user into one support-

ing many: simply have the secret key be a list of one-time secret keys. In the symmetric key

setting, this can be made stateless by utilizing k-wise independent hash functions.

In the public key setting, achieving a stateless construction requires more work, and we

do not believe there is a simple generic construction. We show instead how to modify all the

existing constructions to achieve multiple ciphertexts per user. Along the way, we show an

interesting combinatorial approach to generically lifting non-committing encryption to the

many-time setting without sacrificing ciphertext rate.

RandomOracleModel. In Section 6.7, we finally turn to constructions in the random

oracle model. We give a construction of symmetric key incompressible encryption with op-

timal key and ciphertext length, achieving security for an unbounded number of users and

unbounded number of ciphertexts per user. As explained above, this is only possible because

our simulator utilizes the random oracle: the incompressibility argument no longer applies

since the simulator can covertly set the messages by programming random oracle queries.

195

The construction is essentially a 2-round unbalanced Feistel network.

We also show that standard hybrid encryption lifts essentially any random oracle-based

symmetric key incompressible encryption to apublic key scheme, assumingonly general pub-

lic key encryption. This significantly generalizes a construction of Branco et al.25. Note,

however, that as observed by Branco et al.25, the security of the scheme in the standardmodel

is problematic: they show that if the PKE scheme is instantiated with fully homomorphic

encryption, then there is a simple efficient attack that completely violates incompressible se-

curity. This gives a very natural randomoracle uninstantiability result. In particular, all prior

random oracle uninstantiabilities require a contrived instantiation of some building block*,

whereas this uninstantiability only requires instantiating hybrid encryptionwith fully homo-

morphic encryption.

Remark 6.1.2. Note that the underlying symmetric key scheme in Branco et al.25 uses ideal

ciphers instead of random oracles. Thus, their uninstantiability is only for the ideal cipher

model.25 claims the counterexample applies to random oracles, since random oracles and ideal

ciphers are supposedly equivalent67. However, this is incorrect, as the equivalence only holds in

the “single stage” setting88. Importantly, incompressible encryption is not a single stage game,

owing to the space bound on the adversary’s storage between receiving the ciphertexts and receiv-

ing the secret keys. In the more general multi-stage setting encompassing incompressible encryp-

tion, the equivalence of ideal ciphers and random oracles is open. Our generalized construction

fixes this issue by directly designing our symmetric key scheme from random oracles.
*For example, even the “natural” uninstnatiability of Fiat-Shamir56 requires a contrived proof system.

196

6.2 Chapter Preliminaries

Lemma 6.2.1 (Johnson Bound, Theorem 3.1 of65). Let C ⊆ Σn with |Σ| = q be any q-ary

error-correcting code with relative distance p0 = 1− (1+ ρ) 1q for ρ > 0, meaning that for any

two distinct values x, y ∈ C, the Hamming distance between x, y is at least p0 · n. Then for any

δ >
√

ρ(q− 1) there exists some L ≤ (q−1)2
δ2−ρ(q−1) such that the code is (p1 = (1− (1+ δ) 1q),L)-

list decodable, meaning that for any y ∈ Σn
q there exist at most L codewords x ∈ C that are

within Hamming distance p1n of y.

Lemma 6.2.2 (Distinguishing implies Predicting). For any randomized functionD : {0, 1}n

× {0, 1}m → {0, 1} there exists some randomized function P : {0, 1}n → {0, 1}m such that

for any jointly distributed random variables (A,B) over {0, 1}n × {0, 1}m:

if Pr[D(A,B) = 1]− Pr[D(A,Um) = 1] ≥ ε then Pr[P(A) = B] ≥ 1
2m

(1+ ε).

Proof. Define P(a) as follows. Sample a random b0 ← {0, 1}m, if D(a, b0) = 1 output b0

else sample a fresh b1 ← {0, 1}m and output b1.

Define p = Pr[D(A,Um) = 1]. Let B0,B1 be independent random variables that are

uniform over {0, 1}m corresponding to the strings b0, b1 . Then we have

Pr[P(A) = B] = Pr[D(A,B0) = 1 ∧ B0 = B] + Pr[D(A,B0) = 0 ∧ B1 = B]

= Pr[B0 = B] Pr[D(A,B) = 1] + Pr[D(A,B0) = 0] Pr[B1 = B]

=
1
2m

(ε+ p) + (1− p)
1
2m

=
1
2m

(1+ ε).

197

6.2.1 Incompressible Symmetric-Key Encryption (SKE)45

Similar to an incompressible PKE scheme discussed in Chapter 5, one can also imagine an

analogous incompressible symmetric key encryption (SKE) scheme. This object has been

studied earlier by Dziembowski under the name forward-secure storage45. The syntax of an

incompressible SKE follows a standard SKE scheme. The “rate” is also defined the same as

the ratio of the message length to the ciphertext length. The security of an incompressible

SKE can be analogously defined through the following experimentDistIncomSKE
A,Π (λ):

1. The adversaryA1 takes 1λ, and outputs a space bound 1S.

2. Run Gen(1λ, 1S) to obtain the key k.

3. Sample a uniform bit b ∈ {0, 1}.

4. The adversary submits an auxiliary input aux.

5. The adversary submits the challenge query consisting of twomessagesm0 andm1, and

receives ct← Enc(k,mb).

6. A1 produces a state st of size at most S.

7. The adversaryA2 is given the tuple (k, aux, st) and outputs a guess b′ for b. If b′ = b,

we say that the adversary succeeds and the output of the experiment is 1. Otherwise,

the experiment outputs 0.

Definition 6.2.1 (Incompressible SKE Security). Let λ and S be security parameters. A sym-

metric key encryption schemeΠ = (Gen,Enc,Dec) is said to have incompressible SKE security

198

if for all PPT adversariesA = (A1,A2):

Pr
[
DistIncomSKE

A,Π (λ) = 1
]
≤ 1

2
+ negl(λ).

6.3 Multi-Instance Randomness Extraction

6.3.1 DefiningMulti-Instance Extraction

Definition 6.3.1 (Multi-Instance Randomness Extraction). A function Ext : {0, 1}n ×

{0, 1}d → {0, 1}m is (t, α, β, ε)-multi-instance extracting if the following holds. Let X =

(X1, . . . ,Xt) be any random variable consisting of blocks Xi ∈ {0, 1}n such that H∞(X) ≥

α · tn. Then, there exists some random variable IX jointly distributed with X, such that IX is

supported over sets I ⊆ [t] of size |I| ≥ β · t and:

(S1, . . . , St,Ext(X1; S1), . . . ,Ext(Xt; St)) ≈ε (S1, . . . , St,Z1, . . . ,Zt)

where Si ∈ {0, 1}d are uniformly random and independent seeds, and Zi ∈ {0, 1}m is sam-

pled independently and uniformly random for i ∈ IX while Zi = Ext(Xi; Si) for i ̸∈ IX.

In other words, the above definition says that if we use a “multi-instance extracting” ex-

tractor with independent seeds to individually extract from t correlated blocks that have a

joint entropy-rate ofα, then seeing all the extracted outputs is indistinguishable from replac-

ing some carefully chosen β-fraction by uniform.

199

6.3.2 Hinting Extractors

Definition 6.3.2 (Hinting Extractor). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a

(δ,L, h,Q)-hinting extractor if it satisfies the following:

• List Decodable: If we think of ECC(x) = (Ext(x; s))s∈{0,1}d as a (2d, n)Σ={0,1}m error-

correcting code over the alphabetΣ = {0, 1}m, then the code is (p = 1− (1+δ)2−m,L)-

list decodable, meaning that for any y ∈ Σ2d , the number of codewords that are within

Hamming distance p · 2d of y is at most L.

• Pairwise-Independent Hint: There exists some functions hint : {0, 1}n × {0, 1}τ →

{0, 1}h, along with rec0 and rec1 such that:

– For all x ∈ {0, 1}n, r ∈ {0, 1}τ , if we define σ = hint(x; r), {s1, . . . , sQ} =

rec0(r), and {y1, . . . , yQ} = rec1(σ, r), then Ext(x; si) = yi for all i ∈ [Q].

– Over a uniformly random r ← {0, 1}τ , the Q seeds {s1, . . . , sQ} = rec0(r), are

individually uniform over {0, 1}d and pairwise independent.

Intuitively, the pairwise-independent hint property says that there is a small (size h) hint

about x that allows us to compute Ext(x; si) for a large (size Q) set of pairwise independent

seeds si. We generally wantQ to be exponential in h.

The list-decoding property, on the other hand, is closely related to the standard definition

of strong randomness extractors. Namely, if Ext is a (k, ε)-extractor then it is also (p = 1−

(1+δ)2−m, 2k)-list decodable for δ = ε ·2m, and conversely, if it is (p = 1−(1+δ)2−m, 2k)-

list deocdable then it is a (k+m+ log(1/δ), δ)-extractor (see Proposition 6.25 in94).

200

Construction1: Hadamard. DefineExt : {0, 1}n×{0, 1}n → {0, 1}m viaExt(x; s) =

⟨x, s⟩, where we interpret x, s as elements ofFn̂
2m for n̂ := n/m and all the operations are over

F2m . The seed length is d = n bits and the output length ism bits.

Lemma 6.3.1. The above Ext : {0, 1}n × {0, 1}n → {0, 1}m is a (δ,L, h,Q)-hinting

extractor for any h, δ > 0 with Q ≥ 2h−m and L ≤ 22m/δ2.

Proof. The list-decoding bounds on δ,L come from the Johnson bound (Lemma 6.2.1) with

q = 2m, ρ = 0. For pairwise-independent hints, let ĥ = h/m and define hint(x;R) to

parse R ∈ Fĥ×n̂
2m and output σ = R · x⊤, which has bit-size h. Let V ⊆ Fĥ

2m be a set of

vectors such that any two distinct vectors v1 ̸= v2 ∈ V are linearly independent. Such a

set V exists of size Q = (2m)ĥ−1 + (2m)ĥ−2 + · · · + 2m + 1 ≥ 2h−m, e.g., by letting V be

the set of all non-zero vectors whose left-most non-zero entry is a 1. Define rec0(R) so that

it outputs {sv = v · R}v∈V . Correspondingly, rec1(σ,R) outputs {yv = ⟨v, σ⟩}v∈V . It’s

easy to see that the seeds sv are individually uniform and pairwise independent, since for any

linearly-independent v1 ̸= v2 ∈ V and the value sv1 = v1R and sv2 = v2R are random and

independent over a random choice of the matrixR. Moreover for all seeds sv we have

Ext(x, sv) = ⟨sv, x⟩ = v · R · x⊤ = ⟨v, σ⟩ = yv.

Construction 2: Hadamard ◦ Reed-Muller. Define Ext(f; s = (s1, s2)) = ⟨f(s1),

s2⟩, where f ∈ F

(
ℓ+g
g

)
2w is interpreted as a ℓ-variate polynomial of total degree g over some field

201

of size 2w > g, and s1 ∈ Fℓ
2w is interpreted as an input to the polynomial (this isReed-Muler).*

Then y = f(s1) and s2 are interpreted as a values in Fw/m
2m and the inner-product ⟨y, s2⟩ is

computed over F2m (this is Hadamard). So overall, in bits, the input length is n = w ·
(
ℓ+g
g

)
,

the seed length is d = w(ℓ + 1) and the output length ism. This code has relative distance

1− (1
2m +

g
2w) = 1− 1

2m (1+
g

2w−m).

Lemma 6.3.2. For any w, ℓ, g,m, δ such that 2w > g andm divides w, if we set n = w ·
(
ℓ+g
g

)
,

d = w(ℓ + 1) then the above Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (δ,L, h,Q)-hinting

extractor with δ =
√

g22m/2w, L = 22m
δ2−g22m/2w , h = w · (g+ 1), Q = 2w.

In particular, for any n,m,w such that m divides w, we can set ℓ = g = log n to get an

(δ,L, h,Q)-hinting extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d = O(w log n),

δ = 2m+log log n−w/2, h = O(w log n) and Q = 2w.

Proof. The list-decoding bounds on δ,L come from the Johnson bound (Lemma 6.2.1) with

q = 2m, ρ =
g

2w−m . On the other hand, for pairwise-independent hints, we can define

hint(f; r) as follows. Parse r = (r0, r1, s11, . . . , s
Q
1) with r0, r1 ∈ Fℓ

2w and si1 ∈ Fw/m
2m . Let

f̂(i) = f(r0 + i · r1) be a univariate polynomial of degree g and define the hint σ = f̂ to be

the description of this polynomial. Define {si = (si0, si1)) = rec0(r) for i ∈ F2w by setting

si0 = r0 + i · r1. Define {yi} = rec1(σ, r) via yi = ⟨̂f(i), si1⟩. It is easy to check correctness

and pairwise independence follows from the fact that the values si0 = r0 + i · r1 are pairwise

independent over the randomness r0, r1.
*Since the the input to the extractor is interpreted as a polynomial, we will denote it by f rather than the

usual x to simplify notation.

202

6.3.3 Hinting-Extractors areMulti-Instance-Extracting

Lemma 6.3.3 (Multi-Instance-Extraction Lemma). LetExt : {0, 1}n×{0, 1}d → {0, 1}m

be a (δ,L, h,Q)-hinting extractor. Then, for any t, α > 0 such that Q ≥ 2t22m
δ2
, it is also

(t, α, β, ε)-multi-instance extracting with ε = 6tδ and β = α− log L+h+log t+log(1/ε)+3
n .

Proof. Our proof follows a sequence of steps.

Step 0: Relax the Size Requirement. We modify the statement of the lemma as fol-

lows. Instead of requiring that |IX| ≥ β · t holds with probability 1, we relax this to requiring

that Pr[|IX| < β · t] ≤ ε/4. On the other hand, we strengthen the requirement on statistical

indisitnguishability from ε to ε/2:

(S1, . . . , St,Ext(X1; S1), . . . ,Ext(X1; St)) ≈ε/2 (S1, . . . , St,Z1, . . . ,Zt).

This modified variant of the lemma implies the original.

To see this, notice that we can replace the set IX that satisfies the modified variant with

I′X which is defined as I′X := IX when |IX| ≥ βt and I′X := {1, . . . , βt} else. The set I′X then

satisfies the original variant. In particular, we can prove the indisintinguishability guarantee

of the original lemma via a hybrid argument: replace I′X by IX (ε/4 statistical distance), switch

from the left distribution to right distribution (ε/2 statistical distance), replace IX back by I′X

(ε/4 statistical distance) for a total distance of ε.

Step 1: Change quantifiers. We need to prove that: for all X with H∞(X) ≥ α · tn,

there exists some random variable IX ⊆ [t] with Pr[|IX| < βt] ≤ ε/4 such that for all

203

(inefficient) distinguishers D:

Pr[D(S1, . . . , St,Y1, . . . ,Yt) = 1]− Pr[D(S1, . . . , St,Z1, . . . ,Zt) = 1] ≤ ε/2 (6.1)

where we define Yi = Ext(Xi; Si), and the random variables Zi are defined as in the Lemma.

By the min-max theorem, we can switch the order of the last two quantifiers. In particular,

it suffices to prove that: for all X with H∞(X) ≥ α · tn and for all (inefficient, randomized)

distinguishers D there exists some random variable IX ⊆ [t] with Pr[|IX| < βt] ≤ ε/4 such

that equation (6.1) holds.

Wecan applymin-max because a distribution over inefficient distinguishersD is the same

as a single randomized inefficient distinguisher D and a distribution over random variables

IX is the same as a single random variable IX.

Step 2: Define IX. Fix a (inefficient/randomized) distinguisherD.

For any fixed value x ∈ {0, 1}n·t, we define a set Ix ⊆ [t] iteratively as follows. Start with

Ix := ∅. For i = 1, . . . , t add i to Ix if Pr[D(S1, . . . , St,Zx
1 . . . ,Zx

i−1,Yx
i ,Yx

i+1, . . . ,Yx
t) = 1]

− Pr[D(S1, . . . , St,Zx
1, . . . ,Zx

i−1,Um,Yx
1+1, . . . ,Yx

t) = 1]

 ≤ 3δ (6.2)

where Si is uniform over {0, 1}d, Yx
j = Ext(xj; Sj) and for j < iwe defineZx

j to be uniformly

random over {0, 1}m for j ∈ Ix, while Zx
j = Yx

j for j ̸∈ Ix. Note that Yx
i = (Yi|X = x) and

Zx
i = (Zi|X = x).

Define IX to be the random variable over the above sets Ix where x is chosen according to

204

X. With the above definition, equation 6.1 holds since:

Pr[D(S1, . . . , St,Y1, . . . ,Yt) = 1]− Pr[D(S1, . . . , St,Z1, . . . ,Zt) = 1]

= Ex←X Pr[D(S1, . . . , St,Y1, . . . ,Yt) = 1|X = x]− Pr[[D(S1, . . . , St,Z1, . . . ,Zt) = 1|X = x]

= Ex←X Pr[D(S1, . . . , St,Yx
1, . . . ,Yx

t) = 1]− Pr[D(S1, . . . , St,Zx
1, . . . ,Zx

t) = 1]

= Ex←X
∑
i∈[t]

 Pr[D(S1, . . . , St,Zx
1, . . . ,Zx

i−1,Yx
i ,Yx

i+1, . . . ,Yx
t) = 1]

− Pr[D(S1, . . . , St,Zx
1, . . . ,Zx

i−1,Zx
i ,Yx

i+1, . . . ,Yx
t) = 1]

︸ ︷︷ ︸

(∗)

≤ 3tδ = ε/2

The last line follows since, for any x and any i ∈ [t], if i ̸∈ Ix then Yx
i = Zx

i and therefore

(∗) = 0, and if i ∈ Ix then (∗) ≤ 3δ by the way we defined Ix in equation (6.2).

Step 3: Argue IX is large. We are left to show that

Pr[|IX| < β · t] ≤ ε/4. (6.3)

We do this via a proof by contradiction. Assume otherwise that (6.3) does not hold. Then

we show that we can guessXwith high probability, which contradicts the fact thatX has high

min-entropy. In particular, we define a randomized function guess() such that, for any x for

which |Ix| < β · t, we have:

Pr
x̂←guess()

[x̂ = x] ≥ 1
4
(
tβt+12htLt2βtn

)−1
. (6.4)

205

Then, assuming (6.3) does not hold, we have

Pr
x̂←guess(),x←X

[x̂ = x] ≥ Pr
x←X

[|Ix| < βt] Pr
x̂←guess(),x←X

[x̂ = x | |Ix| < βt]

≥ ε

16
(
tβt+12htLt2βtn

)−1
.

which contradictsH∞(X) ≥ αtn.

Before defining the function guess(), we note that by the definition of Ix in equation

(6.2) and the“distinguishing implies predicting” lemma (Lemma 6.2.2), there exist some pre-

dictors Pi (depending only onD), such that, for all x ∈ {0, 1}n and i ̸∈ Ix, we have:

Pr[Pi(S1, . . . , St,Zx
1, . . . ,Zx

i−1,Yx
i+1, . . . ,Yx

t) = Yx
i] ≥

1
2m

(1+ 3δ) (6.5)

The guessing strategy. We define guess() using these predictors Pi as follows:

1. Sample values r1, . . . , rt with ri ← {0, 1}τ .

2. Sample a set Îx ⊆ [t] of size |̂Ix| ≤ βt uniformly at random.

3. Sample values σ̂i ← {0, 1}h for i ̸∈ Îx uniformly at random.

4. Sample values x̂i ← {0, 1}n for i ∈ Îx uniformly at random.

5. Let {s1i , . . . , s
Q
i } = rec0(ri), and {y1i , . . . , y

Q
i } = rec1(σ̂i, ri).

6. Use all of the above values to define, for each i ̸∈ Îx, a randomized function P̂i(s)

206

which chooses a random j∗ ← [Q] and outputs:

P̂i(s) = Pi(s
j∗
1 , . . . , s

j∗
i−1, s, s

j∗
i+1, . . . , s

j∗
t , z

j∗
1 , . . . , z

j∗
i−1, y

j∗
i+1, . . . , y

j∗
t)

where zj
∗

i := yj
∗

i if i ̸∈ Îx and z
j∗
i ← {0, 1}m if i ∈ Îx.

7. For each i ̸∈ Îx, define cwi ∈ Σ2d by setting cwi[s] ← P̂i(s), whereΣ = {0, 1}m. Let

Xi be the list of at most L values x̃i such that theHamming distance between ECC(x̃i)

and cwi is at most (1+ δ)2d, as in Definition 6.3.2.

8. For each i ̸∈ Îx, sample x̂i ← Xi.

9. Output x̂ = (x̂1, . . . , x̂t).

Fix any x such that |Ix| < βt and let us analyze Prx̂←guess()[x̂ = x].

Event E0. Let E0 be the event that Îx = Ix and, for all i ∈ Ix: x̂i = xi and σ̂i = hint(xi, ri).

ThenPr[E0] ≥
(
tβt+12ht2βtn

)−1
.Let us conditiononE0 occurring for the rest of the analysis.

In this case, we can replace all the “hatted” values Îx, σ̂i, x̂iwith their “unhatted” counterparts

Ix, σi = hint(xi, ri), xi and we have y
j
i = Ext(xi; s

j
i). Furthermore, since the “hatted” values

were chosen uniformly at random, E0 is independent of the choice of r1, . . . , rt and of all the

“unhatted” values above; therefore conditioning on E0 does not change their distribution.

Event E1. Now, for any fixed choice of r1, . . . , rt, define the corresponding procedure P̂i to

be “good” if

Pr
s←{0,1}d

[P̂i(s) = Ext(xi; s)] ≥ (1+ 2δ)
1
2m

,

207

where the probability is over the choice of s ← {0, 1}d and the internal randomness of P̂i

(i.e., the choice of the index j∗ ← [Q] and the values zj
∗

i ← {0, 1}m for i ∈ Ix). Let E1 be the

event that for all i ̸∈ Ix we have P̂i is good, where the event is over the choice of r1, . . . , rt.

Define random variablesVj
i over the choice of r1, . . . , rt where

Vj
i = Pr

s←{0,1}d
[P̂i(s) = Ext(xi; s) | j∗ = j]

= Pr
s←{0,1}d

[Pi(s
j
1, . . . , s

j
i−1, s, s

j
i+1, . . . , s

j
t, z

j
1, . . . , z

j
i−1, y

j
i+1, . . . , y

j
t) = Ext(xi; s)].

and Vi :=
∑

j∈Q V
j
i. Then P̂i is good iff Vi ≥ Q(1 + 2δ) 1

2m . By equation (6.5), we have

E[Vi] =
∑

j E[V
j
i] ≥ Q(1 + 3δ) 1

2m . Furthermore, for any fixed i, the variables Vj
i are pair-

wise independent by Definition 6.3.2 and the fact that Vj
i only depends on sji. Therefore

Var[Vi] =
∑

j Var[V
j
i] ≤ Q. We can apply the Chebyshev inequality to get:

Pr[E1|E0] ≥ 1− Pr
[
∃i ̸∈ Ix : Vi < Q(1+ 2δ)

1
2m

]
≥ 1−

∑
i ̸∈Ix

Pr
[
Vi < Q(1+ 2δ)

1
2m

]
≥ 1−

∑
i ̸∈Ix

Pr
[
|Vi − E[Vi]| > Qδ

1
2m

]
≥ 1− t

22m

δ2Q
≥ 1

2

Event E2. Now fix any choice of the values in steps (1)-(6) such that E0,E1 hold. Let cwi

be the values sampled in step 7. Define the event E2 to hold if for all i ̸∈ Ix the value cwi

agrees with ECC(xi) is at least (1 + δ)2d−m coordinates, where the probability is only over

the internal randomness used to sample the components cwi(s) ← P̂i(s). We can define

random variables Ws
i which are 1 if cwi(s) = Ext(xi; s) and 0 otherwise. These variables

208

are mutually independent (since each invocation of P̂i uses fresh internal randomness) and

E[
∑

s Ws
i] = 2d Prs[P̂i(s) = Ext(xi; s)] ≥ (1+2δ)2d−m. Therefore, by theChernoff bound:

Pr[E2|E1 ∧ E0] = 1− Pr[∃i ̸∈ Ix :
∑
s

Ws
i ≤ (1+ δ)2d−m]

≥ 1−
∑
i̸∈Ix

Pr[
∑
s

Ws
i ≤ (1+ δ)2d−m]

≥ 1− t · e−δ22d−m/8 ≥ 1
2

Event E3. Finally, fix any choice of the values in steps (1)-(7) such that E0,E1,E2 hold. Let

E3 be the event that for each i ̸∈ Îx if x̂i ← Xi is the value sampled in step (8) then x̂i = xi.

Then Pr[E3|E2 ∧ E1 ∧ E0] ≥
(1
L

)t. Therefore, our guess is correct if E0,E1,E2,E3 all occur,

which gives us the bound in equation (6.4).

Corollary 6.3.1. For any n,m, t, ε > 0, α > 0, there exist extractors Ext : {0, 1}n ×

{0, 1}d → {0, 1}m that are (t, α, β, ε)-multi-instance extracting with either:

1. seed length d = n and β = α− O(m+log t+log(1/ε))
n , or

2. seed length d = O((log n)(m+ log log n+ log t+ log(1/ε))) and β = α− O(d)
n .

In particular, letting λ denote the security parameter, for any input length n = ω(λ logλ)

with n < 2λ, for number of blocks t < 2λ, any entropy rate α > 0, there exists an ex-

tractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with output length m = λ and seed length

d = O(λ log n), which is a (t, α, β, ϵ = 2−λ)-multi-instance randomness extractor with

β = α − o(1). In other words, the fraction of extracted values that can be replaced by uni-

form is nearly α.

209

6.4 Multi-User Security for Incompressible Encryption

Utilizing multi-instance randomness extractors, we can now explore the multi-user setting

for incompressible encryptions. But first, we need to formally define what it means for an

incompressible PKE or SKE scheme to be multi-user secure.

We propose a simulation-based security definition. Roughly, the simulator first needs to

simulate all the ciphertexts for all the instances without seeing any of the message queries. So

far, this is akin to the standard semantic security notion for encryption. But we need to now

model the fact that the adversary can store ciphertexts for later decryption, at which point it

has all the private keys. We therefore add a second phase where the simulator can query for a

subset of the messages, and thenmust simulate all the private keys. We require that no space-

bounded distinguisher can distinguish between receiving real encryptions/real private keys

vs receiving simulated encryptions/keys. The number of messages the simulator can query is

related to the storage bound of the distinguisher.

Put formally, let Π = (Gen,Enc,Dec) be a public key encryption scheme, to define

simulation-based incompressible ciphertext security for the multiple-instance setting, con-

sider the following two experiments:

• In the realmode experiment, the adversaryA = (A1,A2) interactswith the challenger

C, who has knowledge of all the adversary’s challenge messages.

Real Mode ExpRealΠC,A=(A1,A2)(λ, η, ℓ, S):

1. For i ∈ [η], the challenger C runs Gen(1λ, 1S) to sample (pki, ski).

2. The challenger C sends all the pki’s toA1.

210

3. For each i ∈ [η],A1 can produce up to ℓmessage queries {mi,j}j∈[ℓ]. The adver-

sary submits all of the message queries in one single batch {mi,j}i,j and receives

{cti,j}i,j where cti,j ← Enc(pki,mi,j).

4. A1 produces a state st of size at most S.

5. On input of st, {mi,j}i,j, {(pki, ski)}i,A2 outputs a bit 1/0.

• In the ideal mode experiment, the adversaryA = (A1,A2) interacts with a simulator

S , which needs to simulate the view of the adversary with no/partial knowledge of the

challenge messages.

Ideal Mode ExpIdealΠS,A=(A1,A2)(λ, η, ℓ, q, S):

1. For i ∈ [η], the simulator S samples pki.

2. The simulator S sends all the pki’s toA1.

3. For each i ∈ [η], and j ∈ [ℓ], A1 produces mi,j. All of the queries {mi,j}i,j are

submitted in one batch and the simulator S produces {cti,j}i,j without seeing

{mi,j}i,j.

4. A1 produces a state st of size at most S.

5. The simulator now submits up to q number of (i, j) index pairs, and receives the

corresponding messagesmi,j’s. Then S simulates all the secret keys ski’s.

6. On input of st, {mi,j}i,j, {(pki, ski)}i,A2 outputs a bit 1/0.

Notice that the simulator needs to simulate the ciphertexts first without knowing the

correspondingmessages, and then sample the secret keys so that the ciphertexts appear

appropriate under the given messages.

211

Definition 6.4.1 (Multi-Instance Simulation-Based CPA Security). For security parame-

ters λ, η(λ), ℓ(λ), q(λ) and S(λ), a public key encryption scheme Π = (Gen,Enc,Dec) is

(η, ℓ, q, S)-MULT-SIM-CPA secure if for all PPT adversaries A = (A1,A2), there exists a

simulator S such that:

∣∣Pr [ExpRealΠC,A(λ, η, ℓ, S) = 1
]
− Pr

[
ExpIdealΠS,A(λ, η, ℓ, q, S) = 1

]∣∣ ≤ negl(λ).

Remark 6.4.1. If ℓ = 1, we say that the scheme has only single-ciphertext-per-user security. For

ℓ > 1, we say that the scheme has multi-ciphertext-per-user security.

Remark 6.4.2. Notice that by replacing the underlying PKE scheme with a Symmetric Key

Encryption (SKE) scheme and modifying corresponding syntaxes (sample only sk’s instead of

(pk, sk) pairs, and remove step 2 of the experiments where the adversary receives the pk’s), we

can also get aMULT-SIM-CPA security definition for SKE schemes.

6.5 Symmetric Key Incompressible Encryption

In this section, we explore the multi-user security of incompressible SKEs, both in the low-

rate setting and the rate-1 setting. We also present a generic lifting technique to obtain an SKE

withmulti-ciphertext-per-user security from an SKEwith single-ciphertext-per-user security.

6.5.1 LowRate Incompressible SKE

For low rate incompressible SKE, it follows almost immediately frommulti-instance random-

ness extractors that the forward-secure storage byDziembowski45 isMULT-SIM-CPA secure

212

(by usingmulti-instance randomness extractors as the “BSM function” and using One Time

Pad (OTP) as the underlying SKE primitive).

First, let us recall the construction by Dziembowski45, with the multi-instance random-

ness extractors and OTP plugged in.

Construction 6.5.1 (Forward-Secure Storage45). Let λ and S be security parameters. Given

Ext : {0, 1}n × {0, 1}d → {0, 1}w a (t, α, β, ϵ)-multi-instance randomness extractor as

defined in Definition 6.3.1 where the seed length d = poly(λ), output length w = poly(λ)

and n = S
(1−α)t + poly(λ), the construction Π = (Gen,Enc,Dec) for message space {0, 1}w

works as follows:

• Gen(1λ, 1S): Sample a seed s ← {0, 1}d for the randomness extractor, and a key k′ ←

{0, 1}w. Output k = (s, k′).

• Enc(k,m): To encrypt amessagem, first parse k = (s, k′)and sample a long randomness

R← {0, 1}n. Compute the ciphertext as ct = (R, ct′ = Ext(R; s)⊕ k′ ⊕m).

• Dec(k, ct): First, parse ct = (R, ct′) and k = (s, k′). Then compute m = Ext(R; s)⊕

k′ ⊕ ct′.

Correctness is straightforward. Construction 6.5.1 is alsoMULT-SIM-CPA secure. Es-

sentially, the simulator simply sends cti’s as uniformly random strings. Then when the sim-

ulator sends the keys, it would use the simulator for themulti-instance randomness extractor

to get the index subset I ⊂ [η], and for i ∈ I, simply send ki as a uniformly random string.

For i ̸∈ I, it samples the extractor seed si and then compute k′i = mi ⊕ Ext(Ri; si) ⊕ ct′i.

Notice that for i ̸∈ I, ct′i = mi ⊕ Ext(Ri; si) ⊕ k′i, and for i ∈ I, ct′i = mi ⊕ ui ⊕ k′i where

213

ui is a w-bit uniform string. This is now just the definition of multi-instance randomness

extractors.

We prove below theMULT-SIM-CPA security of Construction 6.5.1 formally through a

sequence of hybrids.

In hybrid 0, we start with the ideal mode experiment ExpIdealΠS,A=(A1,A2) with a specific

simulator plugged in, and through the sequence of hybrids, we gradually move towards the

real mode experiment ExpRealΠS,A=(A1,A2).

Sequence of Hybrids

• HybridH0: The ideal mode experiment ExpIdealΠC,A=(A1,A2)(t, 1, (1− β)t, S).

1. For each i ∈ [t], A1 produces mi. All of the queries {mi}i are submitted in a

single batch and not available to the simulator S . S samples uniformly random

ciphertexts cti = (Ri, ct
′
i), and hence is able to produce {cti}i without seeing

{mi}i.

2. A1 produces a state st of size at most S.

3. The simulatorS runs the simulator for themulti-instance randomness extractor

to get a set of indices I ⊆ [t] with |I| ≥ βt. The simulator now submits the set

[t]\I, and receives the correspondingmessages {mi}i̸∈I. ThenS simulates all the

keys ki’s. For i ∈ I, sample a uniform ki ← {0, 1}w. For i ̸∈ I, sample a uniform

seed si, and compute ki = (si,mi ⊕ Ext(Ri; si)⊕ ct′i).

4. On input of st, {mi}i, {ki}i,A2 outputs a bit 1/0.

214

• HybridH1: The same as H0, except that in step 3, for i ∈ I, sample a uniform si and

compute ki = (si,mi ⊕ ui ⊕ ct′i), where ui is a uniformly random w-bit string.

• Hybrid H2: The same as H1, except that in step 3, for all i, sample a uniform seed si,

and compute ki = (si,mi ⊕ Ext(Ri; si)⊕ ct′i). Notice that the game is now identical

to the real mode experimentExpRealΠC,A=(A1,A2), where we send the adversary faithful

encryptions of the message queries.

Proof of Hybrid Arguments

Lemma 6.5.1. No adversary can distinguish between H0 and H1 with non-negligible proba-

bility.

Proof. Notice that the only difference betweenH0 andH1 is that inH0, for i ∈ I, we sample a

uniform si and a uniform k′i, and inH1, we sample a uniform si and compute k′i asmi⊕ui⊕ct′i,

where ui is a uniform w-bit string. This is just an One Time Pad (OTP) encryption ofmi ⊕

ct′i, and hence should be indistinguishable from a uniformly random k′i by the information-

theoretic security of OTP.

Lemma 6.5.2. If Ext : {0, 1}n×{0, 1}d → {0, 1}w is a (t, α, β, ϵ)-multi-instance random-

ness extractor with n = S
(1−α)t + poly(λ), then no adversary can distinguish between H1 and

H2 with non-negligible probability.

Proof. First, notice the difference betweenH1 andH2. InH2, for all i, we have ki = (si,mi⊕

Ext(Ri; si) ⊕ ct′i). In H1, for i ∈ I, ki = (si,mi ⊕ ui ⊕ ct′i). For i ̸∈ I, ki = (si,mi ⊕

Ext(Ri; si)⊕ ct′i) is the same.

215

Notice that eachRi is a uniformly randomn-bit string independentofmi. Soby lemma2.1.1,

H∞({Ri}i|st, {mi}i) = H∞({Ri}i|st) ≥ nt − n(1 − α)t = α · tn, i.e. {Ri}i has at least

α · tn bits of min-entropy conditioned on the adversary’s view. And recall that I is the set

of indices output by the multi-instance randomness extractor simulator. We can invoke the

property of the multi-instance randomness extractor, and hence have

(s1, . . . , st,Ext(R1; s1), . . . ,Ext(Rt; st)) ≈ϵ (s1, . . . , st,Z1, . . . ,Zt),

where Zi = ui for all i ∈ I, and Zi = Ext(Ri; si) for all i ̸∈ I. Notice that in H1, we

equivalently have ki = (si,mi⊕Zi⊕ct′i), and inH2, we have ki = (si,mi⊕Ext(Ri; si)⊕ct′i).

The only difference is that inH1 we have the Zi’s instead of the Ext(Ri; si)’s inH2, and these

are indistinguishable by the extractor property. Hence, no adversary can distinguish between

H1 andH2 with non-negligible probability.

Theorem 6.5.1. Let λ, S be security parameters. If Ext : {0, 1}n × {0, 1}d → {0, 1}w is

a (t, α, β, ϵ)-multi-instance randomness extractor with d,w = poly(λ) and n = S
(1−α)t +

poly(λ), then Construction 6.5.1 is (t, 1, (1− β)t, S)-MULT-SIM-CPA secure.

Proof. The lemmas above show a sequence of a polynomial number of hybrid experiments

whereno adversary candistinguish one from thenextwithnon-negligible probability. Notice

that the first hybridH0 corresponds to the ideal mode experiment of multi-user security, and

the last hybridH2 corresponds to the real mode one. The simulation-based security follows.

Remark 6.5.1. WhileMULT-SIM-CPA security only requires that no PPT adversaries can

distinguish between the realmode and the idealmode experiments, whatwe have proved for con-

216

struction 6.5.1 here is that it is actuallyMULT-SIM-CPA secure against all (potentially compu-

tationally unbounded) adversaries, and hence is information theoreticallyMULT-SIM-CPA

secure.

6.5.2 Rate-1 Incompressible SKE

Branco,Döttling andDujmovic25 construct rate-1 incompressible SKE fromHILL-Entropic

Encodings79, extractors and PRGs. We show that by replacing the extractors with multi-

instance randomness extractors and slightly modifying the scheme, we getMULT-SIM-CPA

security.

First, we recall the definitions and security requirements of a HILL-Entropic Encoding

scheme79.

Definition 6.5.1 (HILL-Entropic Encoding79). Let λ be the security parameter. An (α, β)-

HILL-Entropic Encoding in the common random string setting is a pair of PPT algorithms

Code = (Enc,Dec) that works as follows:

• Enccrs(1λ,m) → c: On input the common random string crs, the security parameter,

and a message, outputs a codeword c.

• Deccrs(c) → m: On input the common random string and a codeword, outputs the

decoded message m.

It satisfies the following properties.

Correctness. For all λ ∈ N and m ∈ {0, 1}∗, Pr[Deccrs(Enccrs(1λ,m)) = m] ≥ 1 −

negl(λ).

217

α-Expansion. For all λ, k ∈ N and for allm ∈ {0, 1}k, |Enccrs(1λ,m)| ≤ α(λ, k).

β-HILL-Entropy. There exists a simulator algorithm SimEnc such that for all polynomial

k = k(λ) and any ensemble of messagesm = {mλ} of length k(λ), consider the following

real mode experiment:

• crs← {0, 1}t(λ,k)

• c← Enccrs(1λ,mλ)

and letCRS,Cdenote the randomvariables for the corresponding values in the realmode

experiment. Also consider the following simulated experiment:

• (crs′, c′)← SimEnc(1λ,mλ)

and let CRS′,C′ be the corresponding random variables in the simulated experiment. We

require that (CRS,C) ≈c (CRS
′,C′) and thatH∞(C′|CRS′) ≥ β(λ, k).

Moran andWichs79 show that we can construct HILL-Entropic Encodings in the CRS

model from either the Decisional Composite Residuosity (DCR) assumption82,35 or the

Learning with Errors (LWE) problem87. Their construction achieves α(λ, k) = k(1 +

o(1))+poly(λ) andβ(λ, k) = k(1−o(1))−poly(λ), whichwe call a “good”HILL-entropic

encoding.

Nowwe reproduce the construction from25 with the multi-instance randomness extrac-

tors and some other minor changes (highlighted below).

Construction 6.5.2 (25). LetλandSbe security parameters. GivenExt : {0, 1}n×{0, 1}d →

{0, 1}w a (t, α, β, ϵ)-multi-instance randomness extractor as defined inDefinition 6.3.1 where

218

the seed length d = poly(λ), w = poly(λ) and n = S
(1−α)t + poly(λ), Code = (Enc,Dec) a

“good” (α′, β′)-HILL-Entropic Encoding scheme, andPRG : {0, 1}w → {0, 1}n a pseudoran-

dom generator secure against non-uniform adversaries, the constructionΠ = (Gen,Enc,Dec)

for message space {0, 1}n works as follows:

• Gen(1λ, 1S): Sample a seed s ← {0, 1}d for the randomness extractor, a common ran-

dom string crs ∈ {0, 1}poly(λ,n) for the HILL-Entropic Encoding, and a random pad

r← {0, 1}n. Output k = (s, r, crs).

• Enc(k,m): To encrypt a message m, first parse k = (s, r, crs) and sample a random

PRG seed s′ ← {0, 1}w. Compute c1 = Code.Enccrs(1λ,PRG(s′)⊕r⊕m) and c2 =

s′ ⊕ Ext(c1, s). The final ciphertext is ct = (c1, c2).

• Dec(k, ct): First, parse ct = (c1, c2) and k = (s, r, crs). Then compute s′ = Ext(c1; s)⊕

c2 and obtain m = Code.Deccrs(c1)⊕ PRG(s′)⊕r.

Correctness follows from the original construction and should be easy to verify. Notice

that by theα′-expansion of the “good”HILL-entropic encoding, the ciphertexts have length

(1 + o(1))n + w + poly(λ) = (1 + o(1))n + poly(λ) (the poly(λ) part is independent

of n), while the messages have length n. Hence the scheme achieves an optimal rate of 1

((1 − o(1)) to be exact). The keys are bit longer though, having size d + n + poly(λ, n) =

n+ poly(λ, n). Furthermore, Moran andWichs79 show that the CRS needs to be at least as

long as the message being encoded. Thus the key has length at least 2n+ poly(λ).

We prove security of Construction 6.5.2 through a sequence of hybrids.

219

Sequence of Hybrids

• HybridH0:

– Run the adversaryA1 to receive {mi}i for i ∈ [t].

– For each i ∈ [t]:

* Sample si ← {0, 1}d uniformly at random.

* Sample ri ← {0, 1}n uniformly at random.

* Sample s′i ← {0, 1}w uniformly at random.

* Sample crsi uniformly at random.

* Let c1,i ← Code.Enccrsi(1λ,PRG(s′i)⊕ ri ⊕mi).

* Let c2,i ← s′i ⊕ Ext(c1,i; si).

* Let cti = (c1,i, c2,i).

– Send {cti}i toA1 and receive a state st.

– Let {ki}i = {(si, ri, crsi)}i.

– On input of st, {mi}i, {ki}i,A2 outputs a bit 1/0.

• HybridH1:

– Run the adversaryA1 to receive {mi}i for i ∈ [t].

– For each i ∈ [t]:

* Sample si ← {0, 1}d uniformly at random.

* Sample ri ← {0, 1}n uniformly at random.

220

* Sample s′i ← {0, 1}w uniformly at random.

* Let (crsi, c1,i)← SimEnc(1λ,PRG(s′i)⊕ ri ⊕mi).

* Let c2,i ← s′i ⊕ Ext(c1,i; si).

* Let cti = (c1,i, c2,i).

– Send {cti}i toA1 and receive a state st.

– Let {ki}i = {(si, ri, crsi)}i.

– On input of st, {mi}i, {ki}i,A2 outputs a bit 1/0.

• HybridH2:

– Run the adversaryA1 to receive {mi}i for i ∈ [t].

– For each i ∈ [t]:

* Sample si ← {0, 1}d uniformly at random.

* Sample ui ← {0, 1}n uniformly at random.

* Sample s′i ← {0, 1}w uniformly at random.

* Let (crsi, c1,i)← SimEnc(1λ, ui).

* Let c2,i ← s′i ⊕ Ext(c1,i; si).

* Let cti = (c1,i, c2,i).

– Send {cti}i toA1 and receive a state st.

– For each i ∈ [t]:

* Let ri = ui ⊕ PRG(s′i)⊕mi.

* Let ki = (si, ri, crsi).

221

– On input of st, {mi}i, {ki}i,A2 outputs a bit 1/0.

• HybridH3:

– Run the adversaryA1 to receive {mi}i for i ∈ [t].

– For each i ∈ [t]:

* Sample si ← {0, 1}d uniformly at random.

* Sample ui ← {0, 1}n uniformly at random.

* Let (crsi, c1,i)← SimEnc(1λ, ui).

* Sample c2,i ← {0, 1}w uniformly at random.

* Let cti = (c1,i, c2,i).

– Send {cti}i toA1 and receive a state st.

– For each i ∈ [t]:

* Let ri = ui ⊕ PRG(c2,i ⊕ Ext(c1,i; si))⊕mi.

* Let ki = (si, ri, crsi).

– On input of st, {mi}i, {ki}i,A2 outputs a bit 1/0.

• HybridH4:

– Run the adversaryA1 to receive {mi}i for i ∈ [t].

– For each i ∈ [t]:

* Sample si ← {0, 1}d uniformly at random.

* Sample ui ← {0, 1}n uniformly at random.

222

* Let (crsi, c1,i)← SimEnc(1λ, ui).

* Sample c2,i ← {0, 1}w uniformly at random.

* Let cti = (c1,i, c2,i).

– Send {cti}i toA1 and receive a state st.

– Run the simulator for the multi-instance randomness extractor to get a set of

indices I ⊆ [t]with |I| ≥ βt. For each i ∈ [t]:

* If i ∈ I, let ri = ui ⊕ PRG(c2,i ⊕ vi)⊕mi where vi is a uniformly sampled

w-bit string.

* If i ̸∈ I, let ri = ui ⊕ PRG(c2,i ⊕ Ext(c1,i; si))⊕mi.

* Let ki = (si, ri, crsi).

– On input of st, {mi}i, {ki}i,A2 outputs a bit 1/0.

• HybridH5:

– Run the adversaryA1 to receive{mi}i for i ∈ [t]. Discard{mi}iwithout looking

at it.

– For each i ∈ [t]:

* Sample si ← {0, 1}d uniformly at random.

* Sample ui ← {0, 1}n uniformly at random.

* Let (crsi, c1,i)← SimEnc(1λ, ui).

* Sample c2,i ← {0, 1}w uniformly at random.

* Let cti = (c1,i, c2,i).

– Send {cti}i toA1 and receive a state st.

223

– Run the simulator for the multi-instance randomness extractor to get a set of

indices I ⊆ [t] with |I| ≥ βt. Submit the set [t]\I, and receive the correspond-

ing messages {mi}i̸∈I. For each i ∈ [t]:

* If i ∈ I, sample a uniform ri ← {0, 1}n.

* If i ̸∈ I, let ri = ui ⊕ PRG(c2,i ⊕ Ext(c1,i; si))⊕mi.

* Let ki = (si, ri, crsi).

– On input of st, {mi}i, {ki}i,A2 outputs a bit 1/0.

Proof of Hybrid Arguments

Lemma 6.5.3. If Code = (Enc,Dec) has β′-HILL-entropy, then no PPT adversary can

distinguish between H0 and H1 with non-negligible probability.

Proof. The only difference betweenH0 andH1 is that inH0, crsi is sampled uniformly ran-

dom and c1,i ← Code.Enccrsi(1λ,PRG(s′i) ⊕ ri ⊕ mi), while in H1, we get (crsi, c1,i) ←

SimEnc(1λ,PRG(s′i)⊕ ri⊕mi). By the β′-HILL-entropy, the crsi and c1,i inH0 are compu-

tationally indistinguishable from the ones in H1. Hence, no PPT adversary can distinguish

betweenH0 andH1 with non-negligible probability.

Lemma 6.5.4. No adversary can distinguish between H1 and H2 with non-negligible proba-

bility.

Proof. Here we are just changing the ways the variables are sampled. In H1, we sample a

uniform ri and compute ui = PRG(s′i)⊕ ri ⊕mi, while inH2, we sample a uniform ui, and

then compute ri = PRG(s′i) ⊕ ui ⊕ mi. These two ways of sampling are equivalent, and

hence no adversary can distinguish betweenH1 andH2 with non-negligible probability.

224

Lemma 6.5.5. No adversary can distinguish between H2 and H3 with non-negligible proba-

bility.

Proof. This step is similar to the previous one, another change of variables. InH2, we sample

a uniform s′i, and compute c2,i = s′i ⊕ Ext(c1,i; si), while inH2, we sample a uniform c2,i and

compute s′i = c2,i⊕Ext(c1,i; si). These are equivalent and hence no adversary can distinguish.

Lemma 6.5.6. If Code = (Enc,Dec) is a “good” HILL-entropic encoding with β′-HILL-

entropy, and Ext : {0, 1}n × {0, 1}d → {0, 1}w is a (t, α, β, ϵ)-multi-instance randomness

extractor with n = S
(1−α)t + poly(λ), then no adversary can distinguish between H3 and H4

with non-negligible probability.

Proof. By the β′-HILL-entropy and the goodness of the encoding scheme,H∞(c1,i|crsi) ≥

β′(λ, n) = n(1−o(1))−poly(λ). With all the c1,i’s combined,wehaveH∞({c1,i}i|{crsi}i) ≥

tn(1− o(1))− tpoly(λ). Then, by the fact that c1,i’s are sampled independent of themi’s and

lemma 2.1.1,H∞({c1,i}i|{crsi}i, {mi}i, st) = H∞({c1,i}i|{crsi}i, st) ≥ tn(1−o(1))−(1−

α)nt = α · tn. Therefore, we can invoke the multi-instance randomness extraction property

and have

(s1, . . . , st,Ext(c1,1; s1), . . . ,Ext(c1,t; st)) ≈ϵ (s1, . . . , st,Z1, . . . ,Zt),

where Zi = vi for all i ∈ I, and Zi = Ext(c1,i; si) for all i ̸∈ I. Notice that in H3, we have

ri = ui⊕PRG(c2,i⊕Ext(c1,i; si))⊕mi, and inH4, we equivalently have ri = ui⊕PRG(c2,i⊕

Zi)⊕mi. The only difference is that inH4 we have theZi’s instead of the Ext(c1,i; si)’s inH3,

225

and these are indistinguishable by the extractor property. Hence, no adversary candistinguish

betweenH3 andH4 with non-negligible probability.

Lemma 6.5.7. If PRG is a pseudorandom generator secure against non-uniform adversaries,

then no PPT adversary can distinguish between H4 and H5 with non-negligible probability.

Proof. First, notice that inH4, for i ∈ I, we compute ri = ui ⊕ PRG(c2,i ⊕ vi)⊕mi, where

vi is a uniformly random string. This is equivalent as ri = ui ⊕ PRG(v′i) ⊕ mi where v′i is

a uniformly random string. So here we are running the PRG on a uniformly random seed.

Although we do need to run the inefficient simulator for the multi-instance randomness ex-

tractor earlier, we can still replace the PRG output with random if the PRG is secure against

non-uniform adversaries. Hence we have ri = ui ⊕ u′i ⊕mi where u′i is a uniformly random

n-bit string, and this is just equivalent as having a uniformly random ri, which is the exact case

inH5. Therefore, no PPT adversary can distinguish betweenH4 andH5 with non-negligible

probability.

Theorem 6.5.2. If Ext : {0, 1}n × {0, 1}d → {0, 1}w is a (t, α, β, ϵ)-multi-instance ran-

domness extractor with n = S
(1−α)t + poly(λ),Code = (Enc,Dec) is a “good” HILL-entropic

encoding with β′-HILL-entropy, and PRG is a pseudorandom generator secure against non-

uniform adversaries, then Construction 6.5.2 is (t, 1, (1− β)t, S)-MULT-SIM-CPA secure.

Proof. The lemmas above show a sequence of a polynomial number of hybrid experiments

where no PPT adversary can distinguish one from the next with non-negligible probability.

Notice that the first hybridH0 corresponds to the real mode experiment of multi-user secu-

rity, and the last hybridH5 corresponds to the idealmode one. The simulation-based security

follows.

226

6.5.3 DealingwithMultipleMessages per User

Above we have showed MULT-SIM-CPA security for SKE schemes where the number of

messages per user ℓ is equal to 1. Here, we showhowwe can generically lift a SKE schemewith

single-message-per-userMULT-SIM-CPA security tomultiple-messages-per-userMULT-SIM-

CPA security.

Construction 6.5.3. Let λ, S be security parameters. Given SKE = (Gen,Enc,Dec) a

(η, 1, q, S)-MULT-SIM-CPA secure SKE with key space {0, 1}n * and F a class of ℓ-wise in-

dependent functions with range {0, 1}n, we constructΠ = (Gen,Enc,Dec) as follows.

• Gen(1λ, 1S): Sample a random function f← F . Output k = f.

• Enc(k = f,m) : Sample a short random string r with |r| = polylog(ℓ), compute

k′ = f(r), and get c← SKE.Enc(k′,m). Output ct = (r, c).

• Dec(k = f, ct = (r, c)) : Compute k′ = f(r), and output m← SKE.Dec(k′, c).

Correctness should be easy to verify given the correctness of the underlying SKE scheme

and the deterministic property of the ℓ-wise independent functions.

Lemma 6.5.8. If SKE is a (η, 1, q, S)-MULT-SIM-CPA secure SKE with key space {0, 1}n

andF is a class of ℓ-wise independent functions with range {0, 1}n, then Construction 6.5.3 is

(η/ℓ, ℓ, q, S− η · polylog(ℓ))-MULT-SIM-CPA secure.

Proof. Weprove this through a reduction. We showthat if there is an adversaryA = (A1,A2)

that breaks the (η/ℓ, ℓ, q, S − η · polylog(ℓ))-MULT-SIM-CPA security of Π, then we can

*Here we assume SKE’s keys are uniformly random n-bit strings. This is without loss of generality since
we can always take the key to be the random coins forGen.

227

construct an adversaryA′ = (A′1,A′2) that breaks the (η, 1, q, S)-MULT-SIM-CPA security

of SKE. A′ = (A′1,A′2)works as follows:

• A′1: First, runA1 to obtain a list of message queries {mi,j}i∈[η/ℓ],j∈[ℓ]. Then, letm′i =

m(i/ℓ)+1,((i−1)mod ℓ)+1 for i ∈ [η]. Notice that here we are essentially flattening the

list of messages. Submit the list {m′i}i∈[η] and receive {ct′i}i∈[η]. Reconstruct cti,j =

(ri,j, ct′(i−1)·ℓ+j) for i ∈ [η/ℓ] and j ∈ [ℓ], where ri,j is a uniformly random string

sampled from {0, 1}polylog(ℓ). Notice that the ri,j’s have no collisions under the same

i with overwhelming probability. Send the list of ciphertexts {cti,j}i,j back toA1 and

receive a state st. Output the state st′ = (st, {ri,j}i,j). The size of the state is |st|+ η ·

polylog(ℓ) ≤ S− η · polylog(ℓ) + η · polylog(ℓ) = S.

• A′2: First receive st′ = (st, {ri,j}i,j), {m′i}i∈[η], {k′i}i∈[η] from the challenger / simula-

tor. Reorganizemi,j = m′(i−1)·ℓ+j for i ∈ [η/ℓ] and j ∈ [ℓ]. Construct ki as an ℓ-wise

independent function fi s.t. for all i ∈ [η/ℓ] and j ∈ [ℓ], fi(ri,j) = k′(i−1)·ℓ+j. Send

st, {mi,j}i∈[η/ℓ],j∈[ℓ], {ki = fi}i∈[η/ℓ] toA2 and receive a bit b. Output b.

Notice thatA′ perfectly simulates the view forA. IfA says it is in the real mode, this means

the ciphertexts are faithful encryptions of the message queries, and hence A′ should be in

the real mode as well, and vice versa. Therefore, construction 6.5.3 is (η/ℓ, ℓ, q, S − η ·

polylog(ℓ))-MULT-SIM-CPA secure.

6.6 Public Key Incompressible Encryption

Here we explore multi-user security of incompressible Public Key Encryptions (PKEs), con-

sidering constructions from60,25. Unlike the SKE setting, where we can generically lift single-

228

ciphertext-per-user security to multi-ciphertext-per-user security, here we show how to ob-

tain multi-ciphertext security by modifying each construction specifically.

6.6.1 LowRate Incompressible PKE

For low rate incompressible PKE, we show that the construction from60 isMULT-SIM-CPA

secure by plugging in the multi-instance randomness extractor. Then, we upgrade the con-

struction to have multi-ciphertext-per-user security by upgrading the functionality of the

underlying functional encryption scheme.

Construction by60.

We recall the low rate incompressible PKE construction by60, with the multi-instance ran-

domness extractor plugged in.

Construction 6.6.1 (60). Given FE = (Setup,KeyGen, Enc,Dec) a single-key selectively se-

cure functional encryption scheme and a (t, α, β, ϵ)-multi-instance randomness extractorExt :

{0, 1}n × {0, 1}d → {0, 1}w, with d = poly(λ), w = poly(λ) and n = S
(1−α)t + poly(λ),

the constructionΠ = (Gen,Enc,Dec) with message space {0, 1}w works as follows:

• Gen(1λ, 1S): First, obtain (FE.mpk,FE.msk) ← FE.Setup(1λ). Then, generate the

secret key for the following function fv with a hardcoded v ∈ {0, 1}d+w:

fv(s′ = (s, pad), flag) =

s′ if flag = 0

s′ ⊕ v if flag = 1
.

Output pk = FE.mpk and sk = FE.skfv ← FE.KeyGen(FE.msk, fv).

229

• Enc(pk,m): Sample a random tuple s′ = (s, pad) where s ∈ {0, 1}d is used as a seed

for the extractor and pad ∈ {0, 1}w is used as a one-time pad. The ciphertext consists of

three parts: FE.ct ← FE.Enc(FE.mpk, (s′, 0)), a long randomness R ∈ {0, 1}n, and

z = Ext(R; s)⊕ pad⊕m.

• Dec(sk, ct = (FE.ct,R, z)): First, obtain s′ ← FE.Dec(FE.skfv ,FE.ct), and then use

the seed s to compute Ext(R; s)⊕ z⊕ pad to recover m.

The correctness follows from the original construction.

Theorem 6.6.1. If FE is a single-key selectively secure functional encryption scheme and Ext :

{0, 1}n×{0, 1}d → {0, 1}w is a (t, α, β, ϵ)-multi-instance randomness extractor with d,w =

poly(λ) and n = S
(1−α)t + poly(λ), then Construction 6.6.1 is (t, 1, (1− β)t, S)-MULT-SIM-

CPA secure.

We prove Theorem 6.6.1 through a sequence of hybrids, starting withH0 being the real

mode experiment and ending with H3 being the ideal mode experiment. The proofs of the

hybrid arguments are identical to those from60 (except for the extractor step, which is anal-

ogous to the proof of Lemma 6.5.2), so we will not reproduce them here and instead point

the reader to the original60 paper.

Sequence of Hybrids

• HybridH0:

– For each i ∈ [t], obtain (FE.mpki,FE.mski) ← FE.Setup(1λ) and sample a

uniform random vi ← {0, 1}d+w. Set pki = FE.mpki and ski = FE.skfvi ←

FE.KeyGen(FE.mski, fvi).

230

– Send {pki}i to the adversaryA1 and receive {mi}i for i ∈ [t].

– For each i ∈ [t]:

* Sample si ← {0, 1}d uniformly at random.

* Sample padi ← {0, 1}w uniformly at random.

* Let s′i = (si, padi).

* Let FE.cti ← FE.Enc(FE.mpki, (s′i, 0)).

* SampleRi ← {0, 1}n uniformly at random.

* Let zi = Ext(Ri; si)⊕ padi ⊕mi.

* Let cti = (FE.cti,Ri, zi).

– Send {cti}i toA1 and receive a state st.

– On input of st, {mi}i, {(pki, ski)}i,A2 outputs a bit 1/0.

• HybridH1:

– For each i ∈ [t], obtain (FE.mpki,FE.mski) ← FE.Setup(1λ) and sample a

uniform random vi ← {0, 1}d+w. Set pki = FE.mpki and ski = FE.skfvi ←

FE.KeyGen(FE.mski, fvi).

– Send {pki}i to the adversaryA1 and receive {mi}i for i ∈ [t].

– For each i ∈ [t]:

* Sample si ← {0, 1}d uniformly at random.

* Sample padi ← {0, 1}w uniformly at random.

* Let s′i = (si, padi).

231

* Let FE.cti ← FE.Enc(FE.mpki, (s′i ⊕ vi, 1)).

* SampleRi ← {0, 1}n uniformly at random.

* Let zi = Ext(Ri; si)⊕ padi ⊕mi.

* Let cti = (FE.cti,Ri, zi).

– Send {cti}i toA1 and receive a state st.

– On input of st, {mi}i, {(pki, ski)}i,A2 outputs a bit 1/0.

• HybridH2:

– For each i ∈ [t], obtain (FE.mpki,FE.mski)← FE.Setup(1λ).

Set only pki = FE.mpki.

– Send {pki}i to the adversaryA1 and receive {mi}i for i ∈ [t].

– For each i ∈ [t]:

* Sample ui ← {0, 1}d+w uniformly at random.

* Let FE.cti ← FE.Enc(FE.mpki, (ui, 1)).

* SampleRi ← {0, 1}n uniformly at random.

* Sample zi ← {0, 1}w uniformly at random.

* Let cti = (FE.cti,Ri, zi).

– Send {cti}i toA1 and receive a state st.

– For each i ∈ [t]:

* Sample si ← {0, 1}d uniformly at random.

* Let padi = Ext(Ri; si)⊕ zi ⊕mi.

232

* Let s′i = (si, padi) and compute vi = s′i ⊕ ui.

* Obtain ski = FE.skfvi ← FE.KeyGen(FE.mski, fvi).

– On input of st, {mi}i, {(pki, ski)}i,A2 outputs a bit 1/0.

• HybridH3:

– For each i ∈ [t], obtain (FE.mpki,FE.mski) ← FE.Setup(1λ). Set only pki =

FE.mpki.

– Send {pki}i to the adversary A1 and receive {mi}i for i ∈ [t]. Discard {mi}i

without looking at it.

– For each i ∈ [t]:

* Sample ui ← {0, 1}d+w uniformly at random.

* Let FE.cti ← FE.Enc(FE.mpki, (ui, 1)).

* SampleRi ← {0, 1}n uniformly at random.

* Sample zi ← {0, 1}w uniformly at random.

* Let cti = (FE.cti,Ri, zi).

– Send {cti}i toA1 and receive a state st.

– Run the simulator for the multi-instance randomness extractor to get a set of

indices I ⊆ [t]with |I| ≥ βt. Submit the set [t]\I, and receive the corresponding

messages {mi}i̸∈I. For each i ∈ [t]:

* Sample si ← {0, 1}d uniformly at random.

* If i ∈ I, sample padi ← {0, 1}w uniformly at random.

* If i ̸∈ I, let padi = Ext(Ri; si)⊕ zi ⊕mi.

233

* Let s′i = (si, padi) and compute vi = s′i ⊕ ui.

* Obtain ski = FE.skfvi ← FE.KeyGen(FE.mski, fvi).

– On input of st, {mi}i, {(pki, ski)}i,A2 outputs a bit 1/0.

Upgrading toMultiple Ciphertexts Per User.

Additionally,We showthat the constructions from60 canbeupgraded tohavemulti-ciphertext-

per-user security. Essentially, all we need is to upgrade the functionality of the underlying

functional encryption scheme to work for a slightly more generalized class of functions. We

will need functions f{vi}i(s, flag) = s ⊕ vflag for hard coded values v1, . . . , vℓ and a special

v0 being the all 0 string. Notice that the original GWZ construction60 can be viewed as us-

ing functions that are a special case where ℓ = 1. We show how to construct FE schemes

for such f{vi}i functions from plain PKE below. With this new class of functions, we can

achieve (t, ℓ, (1 − β)ℓt, S)-MULT-SIM-CPA security. In the hybrid proof where we replace

FE.Enc(FE.mpk, (s′, 0))with FE.Enc(FE.mpk, (s′⊕ v, 1)), now for the j-th message query

for the i-th user where i ∈ [t] and j ∈ [ℓ], we replace FE.Enc(FE.mpki, (s′i,j, 0)) with

FE.Enc(FE.mpki, (s′i,j ⊕ vi,j, j)). The rest of the hybrid proof follows analogously.

Instantiating FE for f{vi}i Functions.

Here we show how to construct the FE scheme for the new class of functions that we need to

upgrade construction 6.6.1 to have multi-ciphertext-per-user security. We only need plain

PKE for the construction. Recall that our functions f{vi}i have the form f{vi}i(s, flag) =

s⊕ vflag, where flag ∈ {0, 1, . . . , ℓ}.

234

Construction 6.6.2. Let (Gen′,Enc′,Dec′) be a public key encryption scheme. Our scheme

FE = (Setup,KeyGen,Enc,Dec) for a single message bit s is defined as:

• Setup(1λ): For i ∈ {0, 1, . . . , n}, b ∈ {0, 1}, run (pki,b, ski,b) ← Gen′(1λ). Output

(mpk = {pki,b}i,b , msk = {ski,b}i,b).

• KeyGen(msk, f{vi}i) = {ski,vi}i. Notice that we hardcode v0 = 0.

• Enc(mpk, (s, flag)): Sample uniformly random bits s(0), s(1), . . . , s(n) s.t. s(0) ⊕ s(1) ⊕

· · ·⊕s(n) = s. For i ∈ {0, 1, . . . , n}\{flag}, b ∈ {0, 1}, compute ci,b = Enc′(pki,b, s(i)).

For b ∈ {0, 1}, compute cflag,b = Enc′(pki,b, s(flag) ⊕ b). Output c = (ci,b)i,b.

• Dec(sk{vi}i , c): Output x = x(0) ⊕ x(1) ⊕ · · · ⊕ x(n) where x(i) = Dec′(ski,vi , ci,vi)

For correctness, note that for i ̸= flag, x(i) = s(i), and that x(flag) = s(flag) ⊕ vflag,

therefore x = s(0) ⊕ s(1) ⊕ · · · ⊕ s(n) ⊕ vflag = s⊕ vflag.

Lemma 6.6.1. If (Gen′,Enc′,Dec′) is a CPA secure public key encryption scheme, then Con-

struction 6.6.2 is single key semi-adaptively secure for the functions f{vi}i .

Proof. Consider a single key semi-adaptive adversary for Construction 6.6.2. Let m0 =

(s0, flag0),m1 = (s1, flag1)be the challengemessages. For a fixedflag, f{vi}i is injective. There-

fore, ifm0 ̸= m1, it must be that flag0 ̸= flag1. Then if the adversary’s secret key query is on

f{vi}i , we must have s0 ⊕ vflag0 = s1 ⊕ vflag1 . Therefore the ci,vi ’s always encrypt an instance

of a secret share of the same value s0 ⊕ vflag0 = s1 ⊕ vflag1 . Hence, for i ̸∈ {flag0, flag1},

b̂ ∈ {0, 1}, ci,b̂’s follow the same distribution in both cases and do not depend on the chal-

lenge bit b. The only dependence on the challenge bit b is that cflagb,0 always encrypts the

opposite bit that cflagb,1 encrypts, whereas cflag1−b,0 and cflag1−b,1 always encrypt the same bit.

235

However, since the adversary never gets to see the secret key skflagb,1−vflagb , a simple hybrid

argument shows that flipping the challenge bit is indistinguishable.

6.6.2 Rate-1 Incompressible PKE

For rate-1 incompressible PKE, we first show that we can easily plug in the multi-instance

randomness extractor to the construction by Guan, Wichs and Zhandry60. We also provide

a generalization on the construction by Branco, Döttling and Dujmovic25 using a Key En-

capsulationMechanism (KEM) with a special non-committing property. For both construc-

tions, we show how to adapt them to allow for multi-ciphertext-per-user security.

Construction by Guan et al.60.

We first reproduce the rate-1 PKE construction from60, with the multi-instance randomness

extractors plugged in.

Construction 6.6.3 (60). Given FE = (Setup,KeyGen, Enc,Dec) a rate-1 functional en-

cryption scheme satisfying single-key semi-adaptive security,Ext : {0, 1}n×{0, 1}d → {0, 1}w

a (t, α, β, ϵ)-multi-instance randomness extractor with d,w = poly(λ), n = S
(1−α)t+poly(λ)

and PRG : {0, 1}w → {0, 1}n a secure PRG against non-uniform adversaries, the construc-

tionΠ = (Gen,Enc,Dec) for message space {0, 1}n works as follows:

• Gen(1λ, 1S): First, obtain (FE.mpk,FE.msk) ← FE.Setup(1λ). Then, generate the

secret key for the following function fv,s with a hardcoded large random pad v ∈ {0, 1}n

236

and a small extractor seed s ∈ {0, 1}d:

fv,s(x, flag) =

x if flag = 0

PRG(Extract(x; s))⊕ v if flag = 1
.

Output pk = FE.mpk and sk = FE.skfv,s ← FE.KeyGen(FE.msk, fv,s).

• Enc(pk,m): The ciphertext is simply an encryption of (m, 0) using the underlying FE

scheme, i.e. FE.ct← FE.Enc(FE.mpk, (m, 0)).

• Dec(sk, ct): Decryptionalso corresponds toFEdecryption. The output isFE.Dec(FE.skfv,s ,

ct) = fv,s(m, 0) = m as desired.

Correctness easily follows from the original construction. The rate of the construction is

the rate of the underlying FEmultiplied by n
n+1 . If the FE has rate (1−o(1)), the construction

has rate (1− o(1)) as desired.

Theorem 6.6.2. If FE = (Setup,KeyGen, Enc,Dec) is a single-key semi-adaptively secure

functional encryption scheme, Ext : {0, 1}n × {0, 1}d → {0, 1}w is a (t, α, β, ϵ)-multi-

instance randomness extractor, with d,w = poly(λ) and n = S
(1−α)t + poly(λ), and PRG :

{0, 1}w → {0, 1}n is a PRG secure against non-uniform adversaries, then Construction 6.6.3

is (t, 1, (1− β)t, S)-MULT-SIM-CPA secure.

We prove Theorem 6.6.2 through a sequence of hybrids, starting withH0 being the real

mode experiment where we play the role of the challenger and ending with H6 being the

ideal mode experiment where we play the role of the simulator. For the proofs of each hy-

brid argument, see the original60 paper, since they are identical except for the extractor step

237

(analogous to Lemma 6.5.2) and the PRG against non-uniform attackers step (analogous to

Lemma 6.5.7).

Sequence of Hybrids

• HybridH0:

– For each i ∈ [t], obtain (FE.mpki,FE.mski) ← FE.Setup(1λ) and sample

uniformly random vi ← {0, 1}n and si ← {0, 1}d. Set pki = FE.mpki and

ski = FE.skfvi,si ← FE.KeyGen(FE.mski, fvi,si).

– Send {pki}i to the adversaryA1 and receive {mi}i for i ∈ [t].

– For each i ∈ [t], let cti = FE.cti ← FE.Enc(FE.mpki, (mi, 0)).

– Send {cti}i toA1 and receive a state st.

– On input of st, {mi}i, {(pki, ski)}i,A2 outputs a bit 1/0.

• HybridH1:

– For each i ∈ [t], obtain (FE.mpki,FE.mski)← FE.Setup(1λ).

Only set pki = FE.mpki for now.

– Send {pki}i to the adversaryA1 and receive {mi}i for i ∈ [t].

– For each i ∈ [t], let cti = FE.cti ← FE.Enc(FE.mpki, (mi, 0)).

– Send {cti}i toA1 and receive a state st.

– For each i ∈ [t]:

* Sample a uniformly random si ← {0, 1}d.

238

* Sample a uniformly random ui ← {0, 1}n, and let vi = ui ⊕mi.

* Let ski = FE.skfvi,si ← FE.KeyGen(FE.mski, fvi,si).

– On input of st, {mi}i, {(pki, ski)}i,A2 outputs a bit 1/0.

• HybridH2:

– For each i ∈ [t], obtain (FE.mpki,FE.mski)← FE.Setup(1λ). Only set pki =

FE.mpki for now.

– Send {pki}i to the adversaryA1 and receive {mi}i for i ∈ [t].

– For each i ∈ [t], let cti = FE.cti ← FE.Enc(FE.mpki, (mi, 0)).

– Send {cti}i toA1 and receive a state st.

– For each i ∈ [t]:

* Sample a uniformly random si ← {0, 1}d.

* Sample auniformly randomPRGkeyki ← {0, 1}w, and let vi =PRG(ki)⊕mi.

* Let ski = FE.skfvi,si ← FE.KeyGen(FE.mski, fvi,si).

– On input of st, {mi}i, {(pki, ski)}i,A2 outputs a bit 1/0.

• HybridH3:

– For each i ∈ [t], obtain (FE.mpki,FE.mski)← FE.Setup(1λ). Only set pki =

FE.mpki for now.

– Send {pki}i to the adversaryA1 and receive {mi}i for i ∈ [t].

– For each i ∈ [t], sample auniformly randomRi ← {0, 1}n, and let cti = FE.cti ←

FE.Enc(FE.mpki, (mi, 0)).

239

– Send {cti}i toA1 and receive a state st.

– For each i ∈ [t]:

* Sample a uniformly random si ← {0, 1}d.

* Let ki = Ext(Ri; si), and let vi = PRG(ki)⊕mi.

* Let ski = FE.skfvi,si ← FE.KeyGen(FE.mski, fvi,si).

– On input of st, {mi}i, {(pki, ski)}i,A2 outputs a bit 1/0.

• HybridH4:

– For each i ∈ [t], obtain (FE.mpki,FE.mski)← FE.Setup(1λ). Only set pki =

FE.mpki for now.

– Send {pki}i to the adversaryA1 and receive {mi}i for i ∈ [t].

– For each i ∈ [t], sample a uniformly random Ri ← {0, 1}n, and let cti =

FE.cti ← FE.Enc(FE.mpki, (Ri, 1)).

– Send {cti}i toA1 and receive a state st.

– For each i ∈ [t]:

* Sample a uniformly random si ← {0, 1}d.

* Let ki = Ext(Ri; si), and let vi = PRG(ki)⊕mi.

* Let ski = FE.skfvi,si ← FE.KeyGen(FE.mski, fvi,si).

– On input of st, {mi}i, {(pki, ski)}i,A2 outputs a bit 1/0.

• HybridH5:

240

– For each i ∈ [t], obtain (FE.mpki,FE.mski)← FE.Setup(1λ). Only set pki =

FE.mpki for now.

– Send {pki}i to the adversaryA1 and receive {mi}i for i ∈ [t].

– For each i ∈ [t], sample a uniformly random Ri ← {0, 1}n, and let cti =

FE.cti ← FE.Enc(FE.mpki, (Ri, 0)).

– Send {cti}i toA1 and receive a state st.

– Run the simulator for the multi-instance randomness extractor to get a set of

indices I ⊆ [t]with |I| ≥ βt. For each i ∈ [t]:

* Sample a uniformly random si ← {0, 1}d.

* If i ∈ I, sample a uniformly random PRG key ki ← {0, 1}w, and let vi =

PRG(ki)⊕mi.

* If i ̸∈ I, let ki = Ext(Ri; si), and let vi = PRG(ki)⊕mi.

* Let ski = FE.skfvi,si ← FE.KeyGen(FE.mski, fvi,si).

– On input of st, {mi}i, {(pki, ski)}i,A2 outputs a bit 1/0.

• HybridH6:

– For each i ∈ [t], obtain (FE.mpki,FE.mski)← FE.Setup(1λ). Only set pki =

FE.mpki for now.

– Send {pki}i to the adversary A1 and receive {mi}i for i ∈ [t]. Discard {mi}i

without looking at it.

– For each i ∈ [t], sample a uniformly random Ri ← {0, 1}n, and let cti =

FE.cti ← FE.Enc(FE.mpki, (Ri, 0)).

241

– Send {cti}i toA1 and receive a state st.

– Run the simulator for the multi-instance randomness extractor to get a set of

indices I ⊆ [t] with |I| ≥ βt. Submit the set [t]\I, and receive the correspond-

ing messages {mi}i̸∈I. For each i ∈ [t]:

* Sample a uniformly random si ← {0, 1}d.

* If i ∈ I, sample a uniformly random vi ← {0, 1}n.

* If i ̸∈ I, let ki = Ext(Ri; si), and let vi = PRG(ki)⊕mi.

* Let ski = FE.skfvi,si ← FE.KeyGen(FE.mski, fvi,si).

– On input of st, {mi}i, {(pki, ski)}i,A2 outputs a bit 1/0.

Upgrading toMultiple Ciphertexts Per User.

UpgradingConstruction6.6.3 tomulti-ciphertext-per-user security is rather straightforward.

Since the construction already requires a full functionality FE scheme, we just modify the

class of functions that the underlying FE scheme uses, without introducing any new assump-

tions. Specifically, we use the class of functions f{vj}j,{sj}j with hard-coded values vj ∈ {0, 1}n

and sj ∈ {0, 1}d for j ∈ [ℓ] that behaves as follows:

f{vj}j,{sj}j(x, flag) =

x if flag = 0

PRG(Extract(x; sflag))⊕ vflag if flag ∈ [ℓ]

.

This gives us (t, ℓ, (1−α)ℓt, S)-MULT-SIM-CPA security. Notice that this modification

does slightly harm the rate of the scheme, since the flag is now log(ℓ) bits instead of one bit,

but asymptotically the rate is still (1− o(1)).

242

The hybrid proof works analogously to that of Theorem 6.6.2, except that in the hybrid

proof where we swap the FE encryption of (m, 0) to (R, 1), we now swap from (mi,j, 0) to

(Ri,j, j) for the j-th ciphertext from the i-th user.

Generalization of Construction by Branco et al.25.

Branco et al.25 showhow to lift a rate-1 incompressible SKE scheme to a rate-1 incompressible

PKE scheme using aKey EncapsulationMechanism33 built fromprogrammableHash Proof

Systems (HPS)32,72. Their construction satisfyCCA2 security. We show that ifwe are to relax

the security notion to only CPA security, all we need for the lifting is a Key Encapsulation

Mechanism with a non-committing property, defined as follows.

Definition 6.6.1 (Key EncapsulationMechanism33). Let λ be the security parameters, a Key

Encapsulation Mechanism (KEM) is a tuple of algorithms Π = (KeyGen,Encap,Decap)

that works as follow:

• KeyGen(1λ, 1Lk) → (pk, sk): The key generation algorithm takes as input the security

parameter and the desired symmetric key length Lk, outputs a pair of public key and

private key (pk, sk).

• Encap(pk) → (k, c): The encapsulation algorithm takes the public key pk, produces a

symmetric key k ∈ {0, 1}Lk , and a header c that encapsulates k.

• Decap(sk, c) → k: The decapsulation algorithm takes as input the private key sk and

a header c, and decapsulates the header to get the symmetric key k.

We require correctness of the KEM.

243

Definition 6.6.2 (Correctness). A key encapsulationmechanismKEM = (KeyGen,Encap,

Decap) is said to be correct if:

Pr

k′ = k :

(pk, sk)← KeyGen(1λ, 1Lk)

(k, c)← Encap(pk)

k′ ← Decap(sk, c)

 ≥ 1− negl(λ).

Definition 6.6.3 (Non-Committing). A key encapsulation mechanism KEM = (KeyGen,

Encap,Decap) is said to benon-committing if there exists a pair of simulator algorithm (Sim1, Sim2)

such that Sim1(1λ, 1Lk) outputs a simulated public key pk′, a header c′ and a state st with

|st| = poly(λ,Lk), and for any given target key k′ ∈ {0, 1}Lk , Sim2(st, k′) outputs the ran-

dom coins rKeyGen and rEncap. We require that if we run the key generation and encapsulation

algorithm using these random coins, we will get the desired pk′, c′, and k′, i.e.:

Pr

pk′ = pk

k′ = k

c′ = c

:
(pk, sk)← KeyGen(1λ, 1Lk ; rKeyGen)

(k, c)← Encap(pk; rEncap)

 ≥ 1− negl(λ).

Kindly notice that by the correctness property,Decap(sk, c′)→ k′.

This non-committing property allows us to commit to a public key and header first, but

then later able to reveal it as an encapsulation of an arbitrary symmetric key in the key space.

And it will be impossible to distinguish the simulated public key and header from the ones

we get from faithfully runningKeyGen and Encap.

Using this non-committing KEM, we are able to construct rate-1 incompressible PKE

from rate-1 incompressible SKE, with multi-user security in mind. This is a generalization

244

of the construction by25.

Construction 6.6.4 (Generalization of25). Let λ, S be security parameters. Given KEM =

(KeyGen,Encap,Decap) a non-commiting KEM and SKE = (Gen,Enc,Dec) a rate-1

incompressible SKE for message space {0, 1}n, we construct rate-1 incompressible PKE Π =

(Gen,Enc,Dec) for message space {0, 1}n as follows:

• Gen(1λ, 1S): First, runSKE.Gen(1λ, 1S) to determine the required symmetric key length

Lk under security parameters λ, S. Then run (pk, sk) ← KEM.KeyGen(1λ, 1Lk) and

output (pk, sk).

• Enc(pk,m): First, run (k, c0) ← KEM.Encap(pk) to sample a symmetric key k, and

encapsulate it into a header c0. Then compute c1 ← SKE.Enc(k,m). The ciphertext is

the tuple (c0, c1).

• Dec(sk, ct = (c0, c1)): First, decapsulate c0 using sk to obtaink← KEM.Decap(sk, c0),

and then use k to decrypt c1 and get m← SKE.Dec(k, c1).

Correctness follows from the correctness of the underlying incompressible SKE and the

KEM scheme. In terms of the rate, to achieve a rate-1 incompressible PKE, we would require

the KEM to produce “short” headers, i.e. |c0| = poly(λ) independent of Lk (notice that

Lk = poly(λ, n) and needs to be at least as large asn). We can build suchKEMsusing various

efficient encapsulation techniques10,2,16. With the short header and an incompressible SKE

with rate (1− o(1)), the ciphertext length is n/(1− o(1))+ poly(λ), yielding an ideal rate of

(1− o(1)) for the construction. However, these KEMs require long public keys, as opposed

to the short public keys in Construction 6.6.3.

245

For security, we prove that if the underlying SKE has MULT-SIM-CPA security, then

Construction 6.6.4 hasMULT-SIM-CPA security as well.

Theorem 6.6.3. If KEM is a non-commiting KEM, and SKE is a (η, 1, q, S)-MULT-SIM-

CPA secure SKEwithmessage space{0, 1}n, thenConstruction6.6.4 is (η, 1, q, S−η·poly(λ, n))-

MULT-SIM-CPA secure.

Proof. Weprove this through a reduction. We showthat if there is an adversaryA = (A1,A2)

that breaks the (η, 1, q, S− η · poly(λ, n))-MULT-SIM-CPA security ofΠ, then we can con-

struct an adversaryA′ = (A′1,A′2) that breaks the (η, 1, q, S)-MULT-SIM-CPA security of

SKE. A′ = (A′1,A′2)works as follows:

• A′1: Use the security parametersλ, S to determine the key lengthLk for the underlying

SKE*. For each i ∈ [η], obtain (pki, c0,i,KEM.sti) ← KEM.Sim1(1λ, 1Lk). Send

{pki}i to A1 to get a list of message queries {mi}i. Then, forward the list {mi}i to

the challenger / simulator and receive a list of ciphertexts {ct′i}i. Construct cti =

(c0,i, ct′i), and send all {cti}i to A1 to receive a state st. Output the state st′ = (st,

{KEM.sti}i). The size of the state is |st|+ η · poly(λ,Lk) ≤ S− η · poly(λ, n) + η ·

poly(λ, n) = S.

• A′2: First receive st′ = (st, {KEM.sti}i), {mi}i, {ki}i from the challenger / simulator.

For each i ∈ [η], run (rKeyGeni , rEncapi)← KEM.Sim2(KEM.sti, ki), and (pki, ski)←

KEM.KeyGen(1λ, 1Lk ; rKeyGeni). Notice that pki matches the pki produced previously

byA′1 due to the non-committing property of the KEM. Send st, {mi}i, {(pki, ski)}i

toA2 and receive a bit b. Output b.

*For the ease of syntax, we imagine the security parameters to be part of the public parameters always ac-
cessible to the adversary.

246

Notice thatA′ perfectly simulates the view forA. IfA says it is in the real mode interacting

with the challenger, this means the ciphertexts cti’s are faithful encryptions of the message

queriesmi’s, i.e. Dec(ski, cti) = SKE.Dec(KEM.Decap(ski, c0,i), ct′i) = mi for all i ∈ [η].

This implies thatSKE.Dec(ki, ct′i) = mi, and henceA′ is also in the realmode. The converse

also holds true. Therefore, construction 6.6.4 is (η, 1, q, S−η ·poly(λ, n))-MULT-SIM-CPA

secure.

Upgrading toMultiple Ciphertexts Per User.

Nextwe showhow to upgradeConstruction 6.6.4 to havemulti-ciphertext-per-user security.

All we need is to upgrade the KEM to be ℓ-strongly non-committing, defined as below.

Definition 6.6.4 (ℓ-Strongly Non-Committing). A key encapsulation mechanism KEM =

(KeyGen,Encap,Decap) is said to be ℓ-strongly non-committing if there exists a pair of sim-

ulator algorithm (Sim1, Sim2) such that Sim1(1λ, 1Lk) outputs a simulated public key pk′, a

set of simulated headers C ′ = {c′1, c′2, . . . , c′ℓ} and a state st with |st| = poly(λ,Lk, ℓ), and

for any given set of target keys K′ = {k′1, k′2, . . . , k′ℓ} where k′i ∈ {0, 1}Lk for all i ∈ [ℓ],

Sim2(st,K′) outputs a set of random coin pairs {(rKeyGeni , rEncapi)}i∈[ℓ]. We require that if we

run the key generation and encapsulation algorithm using the i-th pair of these random coins,

we will get the desired pk′, c′i, and k′i, i.e. for all i ∈ [ℓ]:

Pr

pk′ = pk

k′i = k

c′i = c

:
(pk, sk)← KeyGen(1λ, 1Lk ; rKeyGeni)

(k, c)← Encap(pk; rEncapi)

 ≥ 1− negl(λ).

Kindly notice that by the correctness property,Decap(sk, c′i)→ k′i.

247

We show how to construct ℓ-strongly non-committing KEMs by composing plain non-

committing KEMs below.

To get multi-ciphertext security, we simply plug in the ℓ-strongly non-committing KEM

inplace of the plain non-committingKEM in construction 6.6.4. The resulting construction

has (η/ℓ, ℓ, q, S − η · poly(λ, n, ℓ))-MULT-SIM-CPA security. The security proof follows

analogous from that of Theorem 6.6.3.

Instantiating ℓ-Strongly Non-Committing KEM.

We give a simple construction of ℓ-strongly non-committing KEM by composing 2ℓ plain

non-committing KEMs.

Construction 6.6.5. Let KEM1,KEM2, . . . ,KEMn be n = 2ℓ instances of non-committing

KEMs, we construct an ℓ-strongly non-committing KEM Π = (KeyGen,Encap,Decap) as

follows:

• KeyGen(1λ, 1Lk): For each i ∈ [n], run (pki, ski)← KEMi.KeyGen(1λ, 1Lk). Publish

pk = {pki}i and sk = {ski}i.

• Encap(pk): First sample a random subset I ⊆ [n]. Then for all i ∈ I, get (ki, ci) ←

KEMi.Encap(pki). Output k =
⊕

i∈I ki, and c = (I, {ci}i).

• Decap(sk, c): First parse c = (I, {ci}i). Then for all i ∈ I, get ki ← KEMi.Decap(ski,

ci). Output k =
⊕

i∈I ki.

Correctness is trivial given the correctness of the underlying KEMs. The public key, pri-

vate key and header sizes all blow up by a factor of n.

248

Lemma6.6.2. IfKEM1,KEM2, . . . ,KEMn arenon-committingKEMs, then construction6.6.5

is ℓ-strongly non-committing.

Proof. We show how to construct the pair of simulator algorithms (Sim1, Sim2) forΠ:

• Sim1(1λ, 1Lk): For all i ∈ [n], get (pk′i, c′i, sti) ← KEMi.Sim1(1λ, 1Lk). For all j ∈

[ℓ], sample a random subset Ij ⊆ [n], and let ĉj = (Ij, {c′i}i∈Ij). Output pk′ =

{pk′i}i∈[n], C ′ = {̂cj}j∈[ℓ], and st = ({Ij}j∈[ℓ], {sti}i∈[n]).

• Sim2(st,K′ = {k′j}j∈[ℓ]): First, parse {Ij}j∈[ℓ] as a ℓ × n bit matrixM. Mα,β = 1 if

and only if β ∈ Iα. Solve for the vector v = (v1, v2, . . . , vn)where each vi ∈ {0, 1}Lk

such that

M · v⊤ = (k′1, k′2, . . . , k′ℓ)⊤.

Assume for now that there exists a satisfying solution for v. Notice that this means for

all j ∈ [ℓ], k′j =
⊕

i∈Ij vi, i.e. v gives an assignmentof keys forKEM1,KEM2, . . . ,KEMn

that satisfies the target key set K′ for Π. Now we just to run (rKeyGeni , rEncapi) ←

KEMi.Sim2(sti, vj) for all i ∈ [n]. Output {(rKeyGeni , rEncapi)}i∈[n].

By the non-committing property of the underlying KEMs, it is easy to see that these random

coins yield the simulated public keys, headers and the target keys.

The only remaining thing to show is that M · v⊤ = (k′1, k′2, . . . , k′ℓ)⊤ has a satisfying

solution for v. Notice that vhas at least one solution ifMhas rank ℓ. Having rank ℓ essentially

says that all the rows of M are linearly independent. This ensures that the linear equation

system generated by M · v⊤ = (k′1, k′2, . . . , k′ℓ)⊤ is consistent. Notice having rank ℓ also

means that M has at least ℓ non-zero columns. This gives us a consistent linear equation

systemwith ℓ equations and at least ℓ variables, which is guaranteed to have a (not necessarily

249

unique) solution. Notice that if we choose n = 2ℓ, thenM is an ℓ × 2ℓmatrix, which has

full rank (rank ℓ) with overwhelming probability 1− O(2−ℓ).

6.7 Incompressible Encryption in the RandomOracleModel

6.7.1 Rate-1 Incompressible SKE fromRandomOracles

We show how to build rate-1 incompressible SKE in the random oracle model.

Construction 6.7.1. Letλ, Sbe security parameters. GivenG : {0, 1}poly(λ)×{0, 1}poly(λ) →

{0, 1}n,H : {0, 1}poly(λ) × {0, 1}n → {0, 1}poly(λ) two hash functions modelled as random

oracles, we constructΠ = (Gen,Enc,Dec) for message space {0, 1}n as follows:

• Gen(1λ, 1S): Sample a uniformly random key k ∈ {0, 1}poly(λ). Output k.

• Enc(k,m): First, choose a random r ← {0, 1}poly(λ). Let d = G(k, r) ⊕ m. Then let

c = H(k, d)⊕ r. Output ct = (c, d).

• Dec(k, ct = (c, d)): First, Compute r = H(k, d)⊕ c, and then m = G(k, r)⊕ d.

Correctness is easy to verify given that G and H are deterministic. The ciphertext has

length |c|+ |d| = n+ poly(λ), which gives an ideal rate of (1− o(1)). The secret key size is

poly(λ), which is also optimal.

The construction has (2λ, 2λ, S
n , S)-MULT-SIM-CPA security. Notice that this security

holds for an unbounded (exponential) number of ciphertexts per user.

Theorem6.7.1. IfG,Harehash functionsmodelledas randomoracles, then construction6.7.1

is (2λ, 2λ, S
n , S)-MULT-SIM-CPA secure.

250

Proof. Weprove this by limiting the adversary’s queries to the randomoraclesG andH through

several steps. First, recall the challenger’s behavior in the real mode experiment:

• For i ∈ [2λ], sample a uniform ki ∈ {0, 1}poly(λ).

• Receive a list of message queries {mi,j}i,j∈[2λ] fromA1.

• For each i, j ∈ [2λ]:

– Sample a uniformly random ri,j ← {0, 1}poly(λ).

– Let di,j = G(ki, ri,j)⊕mi,j.

– Let ci,j = H(ki, di,j)⊕ ri,j.

– Let cti,j = (ci,j, di,j).

• Send {cti,j}i,j toA1 and receive a state st of size at most S.

• On input of st, {mi,j}i,j, {ki}i,A2 outputs a bit 1/0.

Now we limit the adversary’s queries toG andH.

1. Notice thatA1 can never query the randomoraclesG orH using some ki, since the ki’s

remain hidden fromA1. The probability ofA1 guessing a ki correctly is exponentially

small.

2. A2 can only query G(ki, ri,j) after querying H(ki, di,j). This is because ifA2 has not

queried H(ki, di,j) yet, then ri,j = H(ki, di,j) ⊕ ci,j is just a uniformly random λ-bit

string to the adversary, and the probability of guessing it correctly is exponentially

small.

251

3. A2 can make at most S/n queries toH(ki, di,j) with different (i, j) pairs. Notice that

the probability of guessing a di,j correctly is exponentially small. So in order to suc-

cessfully queryH(ki, di,j), di,j must be stored in st. But each di,j is n bits, and |st| ≤ S,

soA2 can recover at most S/n such di,j’s and hence make at most S/n valid queries to

H.

With these limitations inmind, the simulator for the ideal mode experiment works as follow:

• Receive a list of message queries {mi,j}i,j∈[2λ] fromA1. Discard without looking at it.

• For each i, j ∈ [2λ]:

– Sample a uniformly random ci,j ← {0, 1}poly(λ).

– Sample a uniformly random di,j ← {0, 1}n.

– Let cti,j = (ci,j, di,j).

• Send {cti,j}i,j toA1 and receive a state st of size at most S.

• Sample uniformly random keys ki ∈ {0, 1}poly(λ)

• A2 receives st, {mi,j}i,j, {ki}i.

• Whenever A2 queries the random oracle on H(ki, di,j), submit a query for message

mi,j. Therewill be atmost S/n suchqueries. ProgramH(ki, di,j) to output a uniformly

random string r′i,j ← {0, 1}poly(λ), and programG(ki, r′i,j ⊕ ci,j) = mi,j ⊕ di,j.

• A2 outputs a bit 1/0.

252

Notice that this simulator queries a subset ofmessages that has size at most S/n. It is easy

to see that a PPT adversary cannot distinguish between the challenger and the simulator. For

a pair of index (i, j) thatA has queriedH(ki, di,j), we have cti,j = (ci,j, di,j) = (H(ki, di,j)⊕

ri,j,G(ki, ri,j)⊕mi,j) is just a faithful encryptionofmi,j, which is the same thing the challenger

in the real mode would output. For a pair of index (i, j) thatA has not queried H(ki, di,j),

then by limitation 2 above,A has also not queriedG(ki, ri,j). Here,mi,j is essentially masked

with a randomstring, so the adversary cannot tell between an encryptionofmi,j and a random

ciphertext, i.e. the challenger output and the simulator output.

6.7.2 Rate-1 Incompressible PKE fromRandomOracles

We then showhow to construct rate-1 incompressible PKE from randomoracles, plain PKE,

and rate-1 incompressible SKE. The construction is essentially a hybridmode PKEwith ran-

dom oracles plugged in. Notice that this construction can be viewed as a generalization of

Construction 5 in Section 7.1 of25.

Construction 6.7.2. Let λ, S be security parameters. Given PKE′ = (Gen′,Enc′,Dec′) a

plain PKE scheme with many-time CPA security, SKE = (Gen,Enc,Dec) a rate-1 incom-

pressible SKE with (2λ, 1, q, S)-MULT-SIM-CPA security, message space {0, 1}n and key space

{0, 1}Lk , and H : {0, 1}poly(λ) → {0, 1}Lk a hash function modelled as a random oracle, we

constructΠ = (Gen,Enc,Dec) for message space {0, 1}n as follows:

• Gen(1λ, 1S): Run (pk, sk)← PKE′.Gen′(1λ). Output (pk, sk).

• Enc(pk,m): Sample a short randomr ∈ {0, 1}poly(λ). Compute c← PKE′.Enc′(pk, r)

and d← SKE.Enc(H(r),m). Output ct = (c, d).

253

• Dec(sk, ct = (c, d)): Get r← PKE′.Dec′(sk, c), and outputm← SKE.Dec(H(r), d).

It is easy to see that given the correctness of PKE′ and SKE and thatH is deterministic,

this construction is correct. The ciphertexts have length |c|+ |d| = n+ poly(λ), yielding an

ideal rate of (1 − o(1)). The public key and the private key both have size poly(λ), which is

optimal.

We show that the construction has (2λ, 2λ, q, S)-MULT-SIM-CPA security.

Theorem 6.7.2. If PKE′ has many-time CPA security, SKE has (2λ, 1, q, S)-MULT-SIM-

CPA security, and H is a hash function modelled as a random oracle, then construction 6.7.2 is

(2λ, 2λ, q, S)-MULT-SIM-CPA secure.

Proof. We show how to construct the simulator for the ideal mode experiment by using the

simulator for the underlying incompressible SKE.

• For i ∈ [2λ], sample (pki, ski)← PKE′.Gen′(1λ).

• Receive a list of message queries {mi,j}i,j∈[2λ] fromA1. Discard without looking at it.

• Run the simulation for the incompressible SKE to obtain a list of ciphertexts {di,j}i,j

for i, j ∈ [2λ].

• For each i, j ∈ [2λ]:

– Sample a uniformly random ri,j ← {0, 1}poly(λ).

– Let ci,j ← PKE′.Enc′(pki, ri,j).

– Let cti,j = (ci,j, di,j).

254

• Send {cti,j}i,j toA1 and receive a state st of size at most S. Forward the state st to the

simulator for the incompressible SKE.

• Run the incompressible SKE simulator toobtain the simulated symmetric keys{ki,j}i,j,

and reprogram the randomoracleH to outputH(ri,j) = ki,j. In the process, if the SKE

simulator queries formessagemi,j, also query formi,j. Notice that therewill be atmost

q such queries.

• A2 receives st, {mi,j}i,j, {(pki, ski)}i and outputs a bit 1/0.

The security of the underlyingPKE′ ensures that the reprogramming ofH is undetectable to

the adversary. This is because forA1, ri,j’s are encrypted under PKE′, and the PKE′ private

keys remain hidden toA1. Therefore,A1 is not able to queryH on any of the ri,j’s before the

reprogramming happens, and hence is not able to detect it.

By the property of the incompressible SKE simulator, the rest is easy to see that the sim-

ulator constructed above is indistinguishable from a real mode challenger.

Remark 6.7.1. Byusing construction6.7.1 as the incompressible SKE schme in construction6.7.2,

wewould get a rate-1, randomoracle based, incompressiblePKE scheme formessage space{0, 1}n

that has (2λ, 2λ, S
n , S)-MULT-SIM-CPA security.

255

References

[1] Aggarwal, D.,Obremski,M., Ribeiro, J. L., Siniscalchi, L., &Visconti, I. (2020). How
to extract useful randomness fromunreliable sources. InA.Canteaut&Y. Ishai (Eds.),
EUROCRYPT 2020, Part I, volume 12105 of LNCS (pp. 343–372).: Springer, Hei-
delberg.

[2] Albrecht, M., Cid, C., Paterson, K. G., Tjhai, C. J., & Tomlinson, M. (2019). Nts-
kem. NIST submissions, 2, 4–13.

[3] Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., &Wichs, D. (2010). Public-key
encryption in the bounded-retrievalmodel. InH.Gilbert (Ed.),EUROCRYPT2010,
volume 6110 of LNCS (pp. 113–134).: Springer, Heidelberg.

[4] Alwen, J., Dodis, Y., & Wichs, D. (2009). Leakage-resilient public-key cryptography
in the bounded-retrieval model. In S. Halevi (Ed.), CRYPTO 2009, volume 5677 of
LNCS (pp. 36–54).: Springer, Heidelberg.

[5] Ananth, P., Jain, A., & Sahai, A. (2017). Indistinguishability obfuscation for turing
machines: Constant overhead and amortization. In J. Katz & H. Shacham (Eds.),
CRYPTO 2017, Part II, volume 10402 of LNCS (pp. 252–279).: Springer, Heidel-
berg.

[6] Ananth, P. & Placa, R. L. L. (2020). Secure software leasing.

[7] Aumann, Y.&Rabin,M.O. (1999). Information theoretically secure communication
in the limited storage space model. InM. J. Wiener (Ed.), CRYPTO’99, volume 1666
of LNCS (pp. 65–79).: Springer, Heidelberg.

[8] Ball, M., Dachman-Soled, D., Kulkarni, M., & Malkin, T. (2018). Non-malleable
codes from average-case hardness: AC0, decision trees, and streaming space-bounded
tampering. In J. B.Nielsen&V.Rijmen (Eds.),EUROCRYPT2018, Part III, volume
10822 of LNCS (pp. 618–650).: Springer, Heidelberg.

256

[9] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S. P., &
Yang, K. (2001). On the (im)possibility of obfuscating programs. In J. Kilian (Ed.),
CRYPTO 2001, volume 2139 of LNCS (pp. 1–18).: Springer, Heidelberg.

[10] Bardet, M., Barelli, E., Blazy, O., Torres, R. C., Couvreur, A., Gaborit, P., Otmani,
A., Sendrier, N., & Tillich, J.-P. (2017). Big quake binary goppa quasi–cyclic key
encapsulation. NIST submissions.

[11] Barnett Jr., T. (2016). The zettabyte era officially be-
gins (how much is that?). https://blogs.cisco.com/sp/
the-zettabyte-era-officially-begins-how-much-is-that.

[12] Barrington, D. A. M. (1986). Bounded-width polynomial-size branching programs
recognize exactly those languages in NC1. In 18th ACM STOC (pp. 1–5).: ACM
Press.

[13] Bellare, M. & Fuchsbauer, G. (2014). Policy-based signatures. In H. Krawczyk (Ed.),
PKC 2014, volume 8383 of LNCS (pp. 520–537).: Springer, Heidelberg.

[14] Bellare,M., Kane,D.,&Rogaway, P. (2016). Big-key symmetric encryption: Resisting
key exfiltration. InM.Robshaw& J.Katz (Eds.),CRYPTO2016, Part I, volume 9814
of LNCS (pp. 373–402).: Springer, Heidelberg.

[15] Bendlin, R., Nielsen, J. B., Nordholt, P. S., & Orlandi, C. (2011). Lower and upper
bounds for deniable public-key encryption. In D. H. Lee & X. Wang (Eds.), ASI-
ACRYPT 2011, volume 7073 of LNCS (pp. 125–142).: Springer, Heidelberg.

[16] Bernstein, D. J., Chou, T., Lange, T., vonMaurich, I., Misoczki, R., Niederhagen, R.,
Persichetti, E., Peters, C., Schwabe, P., Sendrier, N., et al. (2017). Classic mceliece:
conservative code-based cryptography. NIST submissions.

[17] Biryukov, A. & Khovratovich, D. (2016). Egalitarian computing. In T. Holz & S.
Savage (Eds.),USENIX Security 2016 (pp. 315–326).: USENIX Association.

[18] Bitansky, N., Canetti, R., Kalai, Y. T., & Paneth, O. (2014). On virtual grey box ob-
fuscation for general circuits. In J. A. Garay & R. Gennaro (Eds.), CRYPTO 2014,
Part II, volume 8617 of LNCS (pp. 108–125).: Springer, Heidelberg.

[19] Boneh, D., Sahai, A., & Waters, B. (2011). Functional encryption: Definitions and
challenges. In Y. Ishai (Ed.), TCC 2011, volume 6597 of LNCS (pp. 253–273).:
Springer, Heidelberg.

257

https://blogs.cisco.com/sp/the-zettabyte-era-officially-begins-how-much-is-that
https://blogs.cisco.com/sp/the-zettabyte-era-officially-begins-how-much-is-that

[20] Boneh, D. &Waters, B. (2013). Constrained pseudorandom functions and their ap-
plications. In K. Sako & P. Sarkar (Eds.),ASIACRYPT 2013, Part II, volume 8270 of
LNCS (pp. 280–300).: Springer, Heidelberg.

[21] Boneh, D. & Zhandry, M. (2014). Multiparty key exchange, efficient traitor tracing,
andmore from indistinguishability obfuscation. In J. A. Garay &R. Gennaro (Eds.),
CRYPTO 2014, Part I, volume 8616 of LNCS (pp. 480–499).: Springer, Heidelberg.

[22] Boyle, E., Chung, K.-M., & Pass, R. (2014a). On extractability obfuscation. In Y.
Lindell (Ed.), TCC 2014, volume 8349 of LNCS (pp. 52–73).: Springer, Heidelberg.

[23] Boyle, E., Goldwasser, S., & Ivan, I. (2014b). Functional signatures and pseudoran-
dom functions. In H. Krawczyk (Ed.), PKC 2014, volume 8383 of LNCS (pp. 501–
519).: Springer, Heidelberg.

[24] Brakerski, Z., Döttling, N., Garg, S., & Malavolta, G. (2020). Candidate iO from
homomorphic encryption schemes. In A. Canteaut & Y. Ishai (Eds.), EURO-
CRYPT 2020, Part I, volume 12105 of LNCS (pp. 79–109).: Springer, Heidelberg.

[25] Branco, P., Döttling, N., & Dujmovic, J. (2022). Rate-1 incompressible encryption
from standard assumptions. In E. Kiltz & V. Vaikuntanathan (Eds.), TCC 2022,
Part II, volume 13748 of LNCS (pp. 33–69).: Springer, Heidelberg.

[26] Cachin, C., Crépeau, C., & Marcil, J. (1998). Oblivious transfer with a memory-
bounded receiver. In 39th FOCS (pp. 493–502).: IEEE Computer Society Press.

[27] Cachin, C. & Maurer, U. M. (1997). Unconditional security against memory-
bounded adversaries. In B. S. Kaliski Jr. (Ed.), CRYPTO’97, volume 1294 of LNCS
(pp. 292–306).: Springer, Heidelberg.

[28] Canetti, R., Dwork, C., Naor, M., & Ostrovsky, R. (1997). Deniable encryption. In
B. S. Kaliski Jr. (Ed.), CRYPTO’97, volume 1294 of LNCS (pp. 90–104).: Springer,
Heidelberg.

[29] Canetti, R., Halevi, S., & Katz, J. (2003). A forward-secure public-key encryption
scheme. In E. Biham (Ed.), EUROCRYPT 2003, volume 2656 of LNCS (pp. 255–
271).: Springer, Heidelberg.

[30] Canetti, R., Park, S., &Poburinnaya,O. (2020). Fully deniable interactive encryption.
In D. Micciancio & T. Ristenpart (Eds.), CRYPTO 2020, Part I, volume 12170 of
LNCS (pp. 807–835).: Springer, Heidelberg.

258

[31] Cash, D., Ding, Y. Z., Dodis, Y., Lee, W., Lipton, R. J., & Walfish, S. (2007).
Intrusion-resilient key exchange in the bounded retrievalmodel. In S. P.Vadhan (Ed.),
TCC 2007, volume 4392 of LNCS (pp. 479–498).: Springer, Heidelberg.

[32] Cramer, R. & Shoup, V. (2002). Universal hash proofs and a paradigm for adap-
tive chosen ciphertext secure public-key encryption. In L. R. Knudsen (Ed.), EURO-
CRYPT 2002, volume 2332 of LNCS (pp. 45–64).: Springer, Heidelberg.

[33] Cramer, R. & Shoup, V. (2003). Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal onCom-
puting, 33(1), 167–226.

[34] Damgård, I., Fehr, S., Renner, R., Salvail, L., & Schaffner, C. (2007). A tight high-
order entropic quantum uncertainty relation with applications. In A.Menezes (Ed.),
CRYPTO 2007, volume 4622 of LNCS (pp. 360–378).: Springer, Heidelberg.

[35] Damgård, I. & Jurik, M. (2001). A generalisation, a simplification and some applica-
tions of Paillier’s probabilistic public-key system. InK. Kim (Ed.), PKC2001, volume
1992 of LNCS (pp. 119–136).: Springer, Heidelberg.

[36] Department, S. R. (2018). Data center storage capacity worldwide from
2016 to 2021, by segment. https://www.statista.com/statistics/638593/
worldwide-data-center-storage-capacity-cloud-vs-traditional/.

[37] Di Crescenzo, G., Lipton, R. J., & Walfish, S. (2006). Perfectly secure password pro-
tocols in the bounded retrieval model. In S. Halevi & T. Rabin (Eds.), TCC 2006,
volume 3876 of LNCS (pp. 225–244).: Springer, Heidelberg.

[38] Diffie, W., van Oorschot, P. C., &Wiener, M. J. (1992). Authentication and authen-
ticated key exchanges. Designs, Codes and Cryptography, 2(2), 107–125.

[39] Ding, Y. Z. (2001). Oblivious transfer in the bounded storage model. In J. Kilian
(Ed.), CRYPTO 2001, volume 2139 of LNCS (pp. 155–170).: Springer, Heidelberg.

[40] Ding, Y. Z., Harnik, D., Rosen, A., & Shaltiel, R. (2004). Constant-round oblivious
transfer in the bounded storage model. InM.Naor (Ed.),TCC 2004, volume 2951 of
LNCS (pp. 446–472).: Springer, Heidelberg.

[41] Dinur, I., Stemmer, U., Woodruff, D. P., & Zhou, S. (2023). On differential privacy
and adaptive data analysis with bounded space. Cryptology ePrint Archive, Report
2023/171. https://eprint.iacr.org/2023/171.

259

https://www.statista.com/statistics/638593/worldwide-data-center-storage-capacity-cloud-vs-traditional/
https://www.statista.com/statistics/638593/worldwide-data-center-storage-capacity-cloud-vs-traditional/
https://eprint.iacr.org/2023/171

[42] Dodis, Y., Quach, W., & Wichs, D. (2022). Authentication in the bounded storage
model. In O. Dunkelman & S. Dziembowski (Eds.), EUROCRYPT 2022, Part III,
volume 13277 of LNCS (pp. 737–766).: Springer, Heidelberg.

[43] Dodis, Y., Reyzin, L., & Smith, A. (2004). Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. In C. Cachin & J. Camenisch (Eds.), EU-
ROCRYPT 2004, volume 3027 of LNCS (pp. 523–540).: Springer, Heidelberg.

[44] Dziembowski, S. (2006a). Intrusion-resilience via the bounded-storage model. In
S. Halevi & T. Rabin (Eds.), TCC 2006, volume 3876 of LNCS (pp. 207–224).:
Springer, Heidelberg.

[45] Dziembowski, S. (2006b). On forward-secure storage (extended abstract). In C.
Dwork (Ed.), CRYPTO 2006, volume 4117 of LNCS (pp. 251–270).: Springer, Hei-
delberg.

[46] Dziembowski, S., Kazana, T., & Zdanowicz, M. (2018). Quasi chain rule for min-
entropy. Information Processing Letters, 134, 62–66.

[47] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., & Waters, B. (2013a). Can-
didate indistinguishability obfuscation and functional encryption for all circuits. In
54th FOCS (pp. 40–49).: IEEE Computer Society Press.

[48] Garg, S., Gentry, C., Halevi, S., Sahai, A., & Waters, B. (2013b). Attribute-based
encryption for circuits from multilinear maps. In R. Canetti & J. A. Garay (Eds.),
CRYPTO2013, Part II, volume 8043 ofLNCS (pp. 479–499).: Springer,Heidelberg.

[49] Garg, S.,Gentry,C.,Halevi, S.,&Wichs,D. (2014). On the implausibility of differing-
inputs obfuscation and extractable witness encryption with auxiliary input. In J. A.
Garay&R.Gennaro (Eds.),CRYPTO 2014, Part I, volume 8616 ofLNCS (pp. 518–
535).: Springer, Heidelberg.

[50] Garg, S., Gentry, C., Sahai, A., & Waters, B. (2013c). Witness encryption and its ap-
plications. In D. Boneh, T. Roughgarden, & J. Feigenbaum (Eds.), 45th ACMSTOC
(pp. 467–476).: ACM Press.

[51] Gay, R. & Pass, R. (2021). Indistinguishability obfuscation from circular security. In
S. Khuller & V. V. Williams (Eds.), 53rd ACM STOC (pp. 736–749).: ACM Press.

[52] Gentry, C., Sahai, A., & Waters, B. (2013). Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In R.

260

Canetti & J. A. Garay (Eds.), CRYPTO 2013, Part I, volume 8042 of LNCS (pp. 75–
92).: Springer, Heidelberg.

[53] Goldreich, O., Goldwasser, S., &Micali, S. (1984). On the cryptographic applications
of random functions. InG.R. Blakley&D.Chaum (Eds.),CRYPTO’84, volume 196
of LNCS (pp. 276–288).: Springer, Heidelberg.

[54] Goldreich, O., Goldwasser, S., & Micali, S. (1986). How to construct random func-
tions. Journal of the ACM, 33(4), 792–807.

[55] Goldreich, O. & Levin, L. A. (1989). A hard-core predicate for all one-way functions.
In 21st ACM STOC (pp. 25–32).: ACM Press.

[56] Goldwasser, S. &Kalai, Y. T. (2003). On the (in)security of the Fiat-Shamir paradigm.
In 44th FOCS (pp. 102–115).: IEEE Computer Society Press.

[57] Gorbunov, S., Vaikuntanathan, V., & Wee, H. (2012). Functional encryption with
bounded collusions via multi-party computation. In R. Safavi-Naini & R. Canetti
(Eds.),CRYPTO 2012, volume 7417 of LNCS (pp. 162–179).: Springer, Heidelberg.

[58] Goyal, R., Koppula, V., & Waters, B. (2017). Lockable obfuscation. In C. Umans
(Ed.), 58th FOCS (pp. 612–621).: IEEE Computer Society Press.

[59] Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. In
28th ACM STOC (pp. 212–219).: ACM Press.

[60] Guan, J., Wichs, D., & Zhandry, M. (2022). Incompressible cryptography. In O.
Dunkelman& S. Dziembowski (Eds.), EUROCRYPT 2022, Part I, volume 13275 of
LNCS (pp. 700–730).: Springer, Heidelberg.

[61] Guan, J., Wichs, D., & Zhandry, M. (2023). Somewhere randomness extraction and
security against bounded-storagemass surveillance. Cryptology ePrint Archive, Paper
2023/409. https://eprint.iacr.org/2023/409.

[62] Guan, J. & Zhandry, M. (2019). Simple schemes in the bounded storage model. In Y.
Ishai & V. Rijmen (Eds.), EUROCRYPT 2019, Part III, volume 11478 of LNCS (pp.
500–524).: Springer, Heidelberg.

[63] Guan, J. & Zhandry, M. (2021). Disappearing cryptography in the bounded storage
model. In K. Nissim & B. Waters (Eds.), TCC 2021, Part II, volume 13043 of LNCS
(pp. 365–396).: Springer, Heidelberg.

261

https://eprint.iacr.org/2023/409

[64] Günther, C. G. (1990). An identity-based key-exchange protocol. In J.-J. Quisquater
& J. Vandewalle (Eds.), EUROCRYPT’89, volume 434 of LNCS (pp. 29–37).:
Springer, Heidelberg.

[65] Guruswami, V. (2004). List decoding of error-correcting codes: winning thesis of the
2002 ACM doctoral dissertation competition, volume 3282. Springer Science & Busi-
ness Media.

[66] Haber, S. & Stornetta, W. S. (1991). How to time-stamp a digital document. In A. J.
Menezes& S.A.Vanstone (Eds.),CRYPTO’90, volume 537 ofLNCS (pp. 437–455).:
Springer, Heidelberg.

[67] Holenstein, T., Künzler, R., & Tessaro, S. (2011). The equivalence of the random
oracle model and the ideal cipher model, revisited. In L. Fortnow & S. P. Vadhan
(Eds.), 43rd ACM STOC (pp. 89–98).: ACM Press.

[68] Hubacek, P. &Wichs, D. (2015). On the communication complexity of secure func-
tion evaluation with long output. In T. Roughgarden (Ed.), ITCS 2015 (pp. 163–
172).: ACM.

[69] Impagliazzo, R., Levin, L. A., & Luby, M. (1989). Pseudo-random generation from
one-way functions (extended abstracts). In 21st ACM STOC (pp. 12–24).: ACM
Press.

[70] Impagliazzo, R. & Rudich, S. (1990). Limits on the provable consequences of one-
way permutations. In S. Goldwasser (Ed.), CRYPTO’88, volume 403 of LNCS (pp.
8–26).: Springer, Heidelberg.

[71] Jain, A., Lin, H., & Sahai, A. (2021). Indistinguishability obfuscation from well-
founded assumptions. In S. Khuller & V. V. Williams (Eds.), 53rd ACM STOC (pp.
60–73).: ACM Press.

[72] Kalai, Y. T. (2005). Smooth projective hashing and two-message oblivious transfer. In
R.Cramer (Ed.),EUROCRYPT2005, volume 3494 ofLNCS (pp. 78–95).: Springer,
Heidelberg.

[73] Kiayias, A., Papadopoulos, S., Triandopoulos,N.,&Zacharias, T. (2013). Delegatable
pseudorandom functions and applications. In A.-R. Sadeghi, V. D. Gligor, & M.
Yung (Eds.), ACMCCS 2013 (pp. 669–684).: ACM Press.

[74] Kilian, J. (1988). Founding cryptography on oblivious transfer. In 20th ACM STOC
(pp. 20–31).: ACM Press.

262

[75] Landerreche, E., Stevens, M., & Schaffner, C. (2019). Non-interactive cryptographic
timestamping based on verifiable delay functions. Cryptology ePrint Archive, Report
2019/197. https://eprint.iacr.org/2019/197.

[76] Lu, C.-J. (2002). Hyper-encryption against space-bounded adversaries from on-line
strong extractors. In M. Yung (Ed.), CRYPTO 2002, volume 2442 of LNCS (pp.
257–271).: Springer, Heidelberg.

[77] Maurer, U. M. (1992). Conditionally-perfect secrecy and a provably-secure random-
ized cipher. Journal of Cryptology, 5(1), 53–66.

[78] Moran, T., Shaltiel, R., & Ta-Shma, A. (2004). Non-interactive timestamping in the
bounded storagemodel. InM. Franklin (Ed.),CRYPTO2004, volume 3152 ofLNCS
(pp. 460–476).: Springer, Heidelberg.

[79] Moran, T. & Wichs, D. (2020). Incompressible encodings. In D. Micciancio & T.
Ristenpart (Eds.), CRYPTO 2020, Part I, volume 12170 of LNCS (pp. 494–523).:
Springer, Heidelberg.

[80] Nisan, N. (1990). Psuedorandom generators for space-bounded computation. In
22nd ACM STOC (pp. 204–212).: ACM Press.

[81] O’Neill, A. (2010). Definitional issues in functional encryption. Cryptology ePrint
Archive, Report 2010/556. https://eprint.iacr.org/2010/556.

[82] Paillier, P. (1999). Public-key cryptosystems based on composite degree residuosity
classes. In J. Stern (Ed.), EUROCRYPT’99, volume 1592 of LNCS (pp. 223–238).:
Springer, Heidelberg.

[83] Peikert, C. &Waters, B. (2008). Lossy trapdoor functions and their applications. In
R. E. Ladner & C. Dwork (Eds.), 40th ACM STOC (pp. 187–196).: ACM Press.

[84] Randall, D. (1993). Efficient generation of random nonsingular matrices. Random
Structures & Algorithms, 4.

[85] Raz, R. (2016). Fast learning requires good memory: A time-space lower bound for
parity learning. In I.Dinur (Ed.), 57thFOCS (pp. 266–275).: IEEEComputer Society
Press.

[86] Raz, R. (2017). A time-space lower bound for a large class of learning problems. In
C. Umans (Ed.), 58th FOCS (pp. 732–742).: IEEE Computer Society Press.

263

https://eprint.iacr.org/2019/197
https://eprint.iacr.org/2010/556

[87] Regev, O. (2005). On lattices, learning with errors, random linear codes, and cryp-
tography. In H. N. Gabow&R. Fagin (Eds.), 37th ACM STOC (pp. 84–93).: ACM
Press.

[88] Ristenpart, T., Shacham, H., & Shrimpton, T. (2011). Careful with composition:
Limitations of the indifferentiability framework. In K. G. Paterson (Ed.), EURO-
CRYPT 2011, volume 6632 of LNCS (pp. 487–506).: Springer, Heidelberg.

[89] Rivest, R. L. (1997). All-or-nothing encryption and the package transform. In E.
Biham (Ed.), FSE’97, volume 1267 of LNCS (pp. 210–218).: Springer, Heidelberg.

[90] Rothblum, R. (2011). Homomorphic encryption: From private-key to public-key.
In Y. Ishai (Ed.), TCC 2011, volume 6597 of LNCS (pp. 219–234).: Springer, Hei-
delberg.

[91] Sahai, A.&Waters, B.R. (2005). Fuzzy identity-based encryption. InR.Cramer (Ed.),
EUROCRYPT 2005, volume 3494 of LNCS (pp. 457–473).: Springer, Heidelberg.

[92] Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and
factoring. In 35th FOCS (pp. 124–134).: IEEE Computer Society Press.

[93] Vadhan, S. P. (2003). On constructing locally computable extractors and cryptosys-
tems in the bounded storagemodel. InD. Boneh (Ed.),CRYPTO2003, volume 2729
of LNCS (pp. 61–77).: Springer, Heidelberg.

[94] Vadhan, S. P. et al. (2012). Pseudorandomness. Foundations and Trends® in Theo-
retical Computer Science, 7(1–3), 1–336.

[95] Wee, H. & Wichs, D. (2020). Candidate obfuscation via oblivious LWE sampling.
Cryptology ePrint Archive, Report 2020/1042. https://eprint.iacr.org/2020/
1042.

[96] Wichs, D. (2013). Barriers in cryptography with weak, correlated and leaky sources.
In R. D. Kleinberg (Ed.), ITCS 2013 (pp. 111–126).: ACM.

[97] Wichs, D.&Zirdelis, G. (2017). Obfuscating compute-and-compare programs under
LWE. InC.Umans (Ed.), 58th FOCS (pp. 600–611).: IEEEComputer Society Press.

[98] Zaverucha,G. (2015). Stronger password-based encryptionusing all-or-nothing trans-
forms.

264

https://eprint.iacr.org/2020/1042
https://eprint.iacr.org/2020/1042

	Abstract
	Introduction
	Our Contributions
	Organization
	Publications contained in this thesis

	Preliminaries
	Min-Entropy Extractor
	Functional Encryption

	Simple Schemes in the Bounded Storage Model
	Introduction
	Chapter Preliminaries
	Raz's Encryption Scheme
	Encrypt Zero Protocols
	Two-Party Key-Agreement Protocol
	Bit Commitment Scheme
	Oblivious Transfer Protocol

	Disappearing Cryptography in the Bounded Storage Model
	Introduction
	Defining Obfuscation in the Bounded Storage Model
	Impossibility of VBB Online Obfuscation
	Public Key Encryption with Disappearing Ciphertext Security
	Disappearing Signature Scheme
	Functional Encryption
	Candidate Construction 1
	Candidate Construction 2

	Incompressible Cryptography
	Introduction
	Chapter Preliminaries
	Incompressible Encryption: Our Basic Construction
	Rate-1 Incompressible Encryption
	Incompressible Signatures: Our Basic Construction
	Rate-1 Incompressible Signatures
	Constructing Rate-1 Functional Encryption

	Multi-User Incompressible Encryption
	Introduction
	Chapter Preliminaries
	Multi-Instance Randomness Extraction
	Multi-User Security for Incompressible Encryption
	Symmetric Key Incompressible Encryption
	Public Key Incompressible Encryption
	Incompressible Encryption in the Random Oracle Model

	References

